
Bioinformatics Toolbox™

User's Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Bioinformatics Toolbox™ User's Guide
© COPYRIGHT 2003–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2003 Online only New for Version 1.0 (Release 13SP1+)
June 2004 Online only Revised for Version 1.1 (Release 14)
November 2004 Online only Revised for Version 2.0 (Release 14SP1+)
March 2005 Online only Revised for Version 2.0.1 (Release 14SP2)
May 2005 Online only Revised for Version 2.1 (Release 14SP2+)
September 2005 Online only Revised for Version 2.1.1 (Release 14SP3)
November 2005 Online only Revised for Version 2.2 (Release 14SP3+)
March 2006 Online only Revised for Version 2.2.1 (Release 2006a)
May 2006 Online only Revised for Version 2.3 (Release 2006a+)
September 2006 Online only Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
April 2007 Online only Revised for Version 2.6 (Release 2007a+)
September 2007 Online only Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.5 (Release 2010a)
September 2010 Online only Revised for Version 3.6 (Release 2010b)
April 2011 Online only Revised for Version 3.7 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.4 (Release 2014a)
October 2014 Online only Revised for Version 4.5 (Release 2014b)
March 2015 Online only Revised for Version 4.5.1 (Release 2015a)

v

Contents

Getting Started
1

Bioinformatics Toolbox Product Description 1-2
Key Features . 1-2

Product Overview . 1-3
Features . 1-3
Expected Users . 1-4

Installation . 1-5
Installing . 1-5
Required Software . 1-5
Optional Software . 1-5

Features and Functions . 1-8
Data Formats and Databases . 1-8
Sequence Alignments . 1-9
Sequence Utilities and Statistics . 1-10
Protein Property Analysis . 1-11
Phylogenetic Analysis . 1-11
Microarray Data Analysis . 1-12
Microarray Data Storage . 1-13
Mass Spectrometry Data Analysis . 1-13
Graph Theory Functions . 1-16
Graph Visualization . 1-17
Statistical Learning and Visualization 1-17
Prototyping and Development Environment 1-18
Data Visualization . 1-18
Algorithm Sharing and Application Deployment 1-19

Exchange Bioinformatic Data Between Excel and MATLAB 1-20
Using Excel and MATLAB Together 1-20
About the Example . 1-20
Before Running the Example . 1-20

vi Contents

Running the Example for the Entire Data Set 1-21
Editing Formulas to Run the Example on a Subset of the

Data . 1-24
Using the Spreadsheet Link EX Interface to Interact With the

Data in MATLAB . 1-25

Get Information from Web Database 1-28
What Are get Functions? . 1-28
Creating the getpubmed Function . 1-29

High-Throughput Sequence Analysis
2

Work with Large Multi-Entry Text Files 2-2
Overview . 2-2
What Files Can You Access? . 2-2
Before You Begin . 2-3
Create a BioIndexedFile Object to Access Your Source File . . 2-4
Determine the Number of Entries Indexed By a BioIndexedFile

Object . 2-4
Retrieve Entries from Your Source File 2-5
Read Entries from Your Source File 2-5

Manage Short-Read Sequence Data in Objects 2-8
Overview . 2-8
Represent Sequence and Quality Data in a BioRead Object . . 2-9
Represent Sequence, Quality, and Alignment/Mapping Data in

a BioMap Object . 2-10
Retrieve Information from a BioRead or BioMap Object . . . 2-14
Set Information in a BioRead or BioMap Object 2-16
Determine Coverage of a Reference Sequence 2-17
Construct Sequence Alignments to a Reference Sequence . . 2-18
Filter Read Sequences Using SAM Flags 2-19

Store and Manage Feature Annotations in Objects 2-21
Represent Feature Annotations in a GFFAnnotation or

GTFAnnotation Object . 2-21
Construct an Annotation Object . 2-21
Retrieve General Information from an Annotation Object . . 2-22
Access Data in an Annotation Object 2-23

vii

Use Feature Annotations with Short-Read Sequence Data . . 2-24

Visualize and Investigate Short-Read Alignments 2-28
When to Use the NGS Browser to Visualize and Investigate

Data . 2-28
Open the NGS Browser . 2-29
Import Data into the NGS Browser 2-30
Zoom and Pan to a Specific Region of the Alignment 2-32
View Coverage of the Reference Sequence 2-33
View the Pileup View of Short Reads 2-34
Compare Alignments of Multiple Data Sets 2-35
View Location, Quality Scores, and Mapping Information . . 2-36
Flag Reads . 2-36
Evaluate and Flag Mismatches . 2-37
View Insertions and Deletions . 2-38
View Feature Annotations . 2-39
Print and Export the Browser Image 2-39

Identifying Differentially Expressed Genes from RNA-Seq
Data . 2-40

Exploring Protein-DNA Binding Sites from Paired-End ChIP-
Seq Data . 2-60

Exploring Genome-wide Differences in DNA Methylation
Profiles . 2-82

Sequence Analysis
3

Exploring a Nucleotide Sequence Using Command Line . . . 3-2
Overview of Example . 3-2
Searching the Web for Sequence Information 3-2
Reading Sequence Information from the Web 3-5
Determining Nucleotide Composition 3-6
Determining Codon Composition . 3-10
Open Reading Frames . 3-15
Amino Acid Conversion and Composition 3-17

viii Contents

Exploring a Nucleotide Sequence Using the Sequence Viewer
App . 3-20

Overview of the Sequence Viewer . 3-20
Importing a Sequence into the Sequence Viewer 3-20
Viewing Nucleotide Sequence Information 3-22
Searching for Words . 3-24
Exploring Open Reading Frames . 3-27
Closing the Sequence Viewer . 3-30

Explore a Protein Sequence Using the Sequence Viewer
App . 3-31

Overview of the Sequence Viewer . 3-31
Viewing Amino Acid Sequence Statistics 3-31
Closing the Sequence Viewer . 3-35
References . 3-35

Sequence Alignment . 3-36
Overview of Example . 3-36
Find a Model Organism to Study . 3-36
Retrieve Sequence Information from a Public Database 3-38
Search a Public Database for Related Genes 3-40
Locate Protein Coding Sequences . 3-42
Compare Amino Acid Sequences . 3-45

View and Align Multiple Sequences 3-54
Overview of the Sequence Alignment and Phylogenetic Tree

Apps . 3-54
Load Sequence Data and Viewing the Phylogenetic Tree . . . 3-54
Select a Subset of Data from the Phylogenetic Tree 3-55
Align Multiple Sequences . 3-57
Adjust Multiple Sequence Alignments Manually 3-58
Close the Sequence Alignment App 3-61

Microarray Analysis
4

Managing Gene Expression Data in Objects 4-2

ix

Representing Expression Data Values in DataMatrix
Objects . 4-5

Overview of DataMatrix Objects . 4-5
Constructing DataMatrix Objects . 4-6
Getting and Setting Properties of a DataMatrix Object 4-6
Accessing Data in DataMatrix Objects 4-7

Representing Expression Data Values in ExptData Objects 4-11
Overview of ExptData Objects . 4-11
Constructing ExptData Objects . 4-11
Using Properties of an ExptData Object 4-12
Using Methods of an ExptData Object 4-13
References . 4-14

Representing Sample and Feature Metadata in MetaData
Objects . 4-15

Overview of MetaData Objects . 4-15
Constructing MetaData Objects . 4-16
Using Properties of a MetaData Object 4-19
Using Methods of a MetaData Object 4-19

Representing Experiment Information in a MIAME Object 4-21
Overview of MIAME Objects . 4-21
Constructing MIAME Objects . 4-21
Using Properties of a MIAME Object 4-23
Using Methods of a MIAME Object 4-24

Representing All Data in an ExpressionSet Object 4-25
Overview of ExpressionSet Objects 4-25
Constructing ExpressionSet Objects 4-27
Using Properties of an ExpressionSet Object 4-28
Using Methods of an ExpressionSet Object 4-28

Visualizing Microarray Images . 4-30
Overview of the Mouse Example . 4-30
Exploring the Microarray Data Set 4-31
Spatial Images of Microarray Data 4-33
Statistics of the Microarrays . 4-37
Scatter Plots of Microarray Data . 4-39

Analyzing Gene Expression Profiles 4-45
Overview of the Yeast Example . 4-45
Exploring the Data Set . 4-45

x Contents

Filtering Genes . 4-49
Clustering Genes . 4-51
Principal Component Analysis . 4-56

Detecting DNA Copy Number Alteration in Array-Based CGH
Data . 4-60

Exploring Gene Expression Data . 4-81

Phylogenetic Analysis
5

Overview of Phylogenetic Analysis . 5-2

Building a Phylogenetic Tree . 5-3
Overview of the Primate Example . 5-3
Searching NCBI for Phylogenetic Data 5-4
Creating a Phylogenetic Tree for Five Species 5-6
Creating a Phylogenetic Tree for Twelve Species 5-8
Exploring the Phylogenetic Tree . 5-10

Phylogenetic Tree App Reference . 5-14
Overview of the Phylogenetic Tree App 5-14
Opening the Phylogenetic Tree App 5-14
File Menu . 5-15
Tools Menu . 5-27
Window Menu . 5-36
Help Menu . 5-36

1

Getting Started

• “Bioinformatics Toolbox Product Description” on page 1-2
• “Product Overview” on page 1-3
• “Installation” on page 1-5
• “Features and Functions” on page 1-8
• “Exchange Bioinformatic Data Between Excel and MATLAB” on page 1-20
• “Get Information from Web Database” on page 1-28

1 Getting Started

1-2

Bioinformatics Toolbox Product Description
Read, analyze, and visualize genomic and proteomic data

Bioinformatics Toolbox provides algorithms and apps for Next Generation Sequencing
(NGS), microarray analysis, mass spectrometry, and gene ontology. Using toolbox
functions, you can read genomic and proteomic data from standard file formats such
as SAM, FASTA, CEL, and CDF, as well as from online databases such as the NCBI
Gene Expression Omnibus and GenBank®. You can explore and visualize this data
with sequence browsers, spatial heatmaps, and clustergrams. The toolbox also provides
statistical techniques for detecting peaks, imputing values for missing data, and selecting
features.

You can combine toolbox functions to support common bioinformatics workflows. You can
use ChIP-Seq data to identify transcription factors; analyze RNA-Seq data to identify
differentially expressed genes; identify copy number variants and SNPs in microarray
data; and classify protein profiles using mass spectrometry data.

Key Features

• Next Generation Sequencing analysis and browser
• Sequence analysis and visualization, including pairwise and multiple sequence

alignment and peak detection
• Microarray data analysis, including reading, filtering, normalizing, and visualization
• Mass spectrometry analysis, including preprocessing, classification, and marker

identification
• Phylogenetic tree analysis
• Graph theory functions, including interaction maps, hierarchy plots, and pathways
• Data import from genomic, proteomic, and gene expression files, including SAM,

FASTA, CEL, and CDF, and from databases such as NCBI and GenBank

 Product Overview

1-3

Product Overview

In this section...

“Features” on page 1-3
“Expected Users” on page 1-4

Features

The Bioinformatics Toolbox product extends the MATLAB® environment to provide
an integrated software environment for genome and proteome analysis. Scientists and
engineers can answer questions, solve problems, prototype new algorithms, and build
applications for drug discovery and design, genetic engineering, and biological research.
An introduction to these features will help you to develop a conceptual model for working
with the toolbox and your biological data.

The Bioinformatics Toolbox product includes many functions to help you with genome
and proteome analysis. Most functions are implemented in the MATLAB programming
language, with the source available for you to view. This open environment lets you
explore and customize the existing toolbox algorithms or develop your own.

You can use the basic bioinformatic functions provided with this toolbox to create more
complex algorithms and applications. These robust and well-tested functions are the
functions that you would otherwise have to create yourself.

Toolbox features and functions fall within these categories:

• Data formats and databases — Connect to Web-accessible databases containing
genomic and proteomic data. Read and convert between multiple data formats.

• High-throughput sequencing — Gene expression and transcription factor analysis
of next-generation sequencing data, including RNA-Seq and ChIP-Seq.

• Sequence analysis — Determine the statistical characteristics of a sequence, align
two sequences, and multiply align several sequences. Model patterns in biological
sequences using hidden Markov model (HMM) profiles.

• Phylogenetic analysis — Create and manipulate phylogenetic tree data.
• Microarray data analysis — Read, normalize, and visualize microarray data.
• Mass spectrometry data analysis — Analyze and enhance raw mass spectrometry

data.

1 Getting Started

1-4

• Statistical learning — Classify and identify features in data sets with statistical
learning tools.

• Programming interface — Use other bioinformatic software (BioPerl and BioJava)
within the MATLAB environment.

The field of bioinformatics is rapidly growing and will become increasingly important as
biology becomes a more analytical science. The toolbox provides an open environment
that you can customize for development and deployment of the analytical tools you will
need.

• Prototype and develop algorithms — Prototype new ideas in an open and
extensible environment. Develop algorithms using efficient string processing and
statistical functions, view the source code for existing functions, and use the code as a
template for customizing, improving, or creating your own functions. See “Prototyping
and Development Environment” on page 1-18.

• Visualize data — Visualize sequences and alignments, gene expression data,
phylogenetic trees, mass spectrometry data, protein structure, and relationships
between data with interconnected graphs. See “Data Visualization” on page 1-18.

• Share and deploy applications — Use an interactive GUI builder to develop
a custom graphical front end for your data analysis programs. Create standalone
applications that run separately from the MATLAB environment. See “Algorithm
Sharing and Application Deployment” on page 1-19.

Expected Users

The Bioinformatics Toolbox product is intended for computational biologists and research
scientists who need to develop new algorithms or implement published ones, visualize
results, and create standalone applications.

• Industry/Professional — Increasingly, drug discovery methods are being supported
by engineering practice. This toolbox supports tool builders who want to create
applications for the biotechnology and pharmaceutical industries.

• Education/Professor/Student — This toolbox is well suited for learning and
teaching genome and proteome analysis techniques. Educators and students can
concentrate on bioinformatic algorithms instead of programming basic functions such
as reading and writing to files.

While the toolbox includes many bioinformatic functions, it is not intended to be a
complete set of tools for scientists to analyze their biological data. However, the MATLAB
environment is ideal for rapidly designing and prototyping the tools you need.

 Installation

1-5

Installation

In this section...

“Installing” on page 1-5
“Required Software” on page 1-5
“Optional Software” on page 1-5

Installing

Install the Bioinformatics Toolbox software from a DVD or Web release using the
MathWorks® Installer. For more information, see the installation documentation.

Required Software

The Bioinformatics Toolbox software requires the following MathWorks products to be
installed on your computer.

Required Software Description

MATLAB Provides a command-line interface and integrated software
environment for the Bioinformatics Toolbox software.

Bioinformatics Toolbox software requires the current
version ofMATLAB.

Statistics and Machine
Learning Toolbox™

Provides basic statistics and probability functions used by
the Bioinformatics Toolbox software.

Bioinformatics Toolbox software requires the current
version ofStatistics and Machine Learning Toolbox.

Optional Software

MATLAB and the Bioinformatics Toolbox software environment is open and extensible.
In this environment you can interactively explore ideas, prototype new algorithms,
and develop complete solutions to problems in bioinformatics. MATLAB facilitates
computation, visualization, prototyping, and deployment.

1 Getting Started

1-6

Using the Bioinformatics Toolbox software with other MATLAB toolboxes and products
will allow you to do advanced algorithm development and solve multidisciplinary
problems.

Optional Software Description

Parallel Computing
Toolbox™

Perform parallel bioinformatic computations on multicore
computers and computer clusters. For an example of batch
processing through parallel computing, see the Batch
Processing of Spectra Using Distributed Computing.

Signal Processing
Toolbox™

Process signal data from bioanalytical instrumentation.
Examples include acquisition of fluorescence data for
DNA sequence analyzers, fluorescence data for microarray
scanners, and mass spectrometric data from protein
analyses.

Image Processing
Toolbox™

Create complex and custom image processing algorithms
for data from microarray scanners.

SimBiology® Model, simulate, and analyze biochemical systems.

Optimization Toolbox™ Use nonlinear optimization to predict the secondary
structure of proteins and the structure of other biological
macromolecules.

Neural Network
Toolbox™

Use neural networks to solve problems where algorithms
are not available. For example, you can train neural
networks for pattern recognition using large sets of
sequence data.

Database Toolbox™ Create your own in-house databases for sequence data with
custom annotations.

MATLAB Compiler™ Create standalone applications from MATLAB GUI
applications, and create dynamic link libraries from
MATLAB functions to use with any programming
environment.

MATLAB Compiler
SDK™

Create COM objects to use with any COM-based
programming environment.

MATLAB Compiler SDK Integrate MATLAB applications into your organization's
Java® programs by creating a Java wrapper around the
application.

 Installation

1-7

Optional Software Description

MATLAB Compiler Create Microsoft® Excel® add-in functions from MATLAB
functions to use with Excel spreadsheets.

Spreadsheet Link™ EX Connect Microsoft Excel with the MATLAB Workspace
to exchange data and to use MATLAB computational
and visualization functions. For more information,
see “Exchange Bioinformatic Data Between Excel and
MATLAB” on page 1-20.

1 Getting Started

1-8

Features and Functions

In this section...

“Data Formats and Databases” on page 1-8
“Sequence Alignments” on page 1-9
“Sequence Utilities and Statistics” on page 1-10
“Protein Property Analysis” on page 1-11
“Phylogenetic Analysis” on page 1-11
“Microarray Data Analysis” on page 1-12
“Microarray Data Storage” on page 1-13
“Mass Spectrometry Data Analysis” on page 1-13
“Graph Theory Functions” on page 1-16
“Graph Visualization” on page 1-17
“Statistical Learning and Visualization” on page 1-17
“Prototyping and Development Environment” on page 1-18
“Data Visualization” on page 1-18
“Algorithm Sharing and Application Deployment” on page 1-19

Data Formats and Databases

The toolbox accesses many of the databases on the Web and other online data sources.
It allows you to copy data into the MATLAB Workspace, and read and write to files with
standard bioinformatic formats. It also reads many common genome file formats, so that
you do not have to write and maintain your own file readers.

Web-based databases — You can directly access public databases on the Web and copy
sequence and gene expression information into the MATLAB environment.

The sequence databases currently supported are GenBank (getgenbank), GenPept
(getgenpept), European Molecular Biology Laboratory (EMBL) (getembl), and Protein
Data Bank (PDB) (getpdb). You can also access data from the NCBI Gene Expression
Omnibus (GEO) Web site by using a single function (getgeodata).

Get multiply aligned sequences (gethmmalignment), hidden Markov model profiles
(gethmmprof), and phylogenetic tree data (gethmmtree) from the PFAM database.

 Features and Functions

1-9

Gene Ontology database — Load the database from the Web into a gene ontology
object (geneont). Select sections of the ontology with methods for the geneont object
(geneont.getancestors, geneont.getdescendants, geneont.getmatrix,
geneont.getrelatives), and manipulate data with utility functions (goannotread,
num2goid).

Read data from instruments — Read data generated from gene sequencing
instruments (scfread, joinseq, traceplot), mass spectrometers (jcampread), and
Agilent® microarray scanners (agferead).

Reading data formats — The toolbox provides a number of functions for reading data
from common bioinformatic file formats.

• Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL
(emblread), PDB (pdbread), and FASTA (fastaread)

• Multiply aligned sequences: ClustalW and GCG formats (multialignread)
• Gene expression data from microarrays: Gene Expression Omnibus (GEO) data

(geosoftread), GenePix® data in GPR and GAL files (gprread, galread), SPOT
data (sptread), Affymetrix® GeneChip® data (affyread), and ImaGene® results files
(imageneread)

• Hidden Markov model profiles: PFAM-HMM file (pfamhmmread)

Writing data formats — The functions for getting data from the Web include the option
to save the data to a file. However, there is a function to write data to a file using the
FASTA format (fastawrite).

BLAST searches — Request Web-based BLAST searches (blastncbi), get the results
from a search (getblast) and read results from a previously saved BLAST formatted
report file (blastread).

The MATLAB environment has built-in support for other industry-standard file formats
including Microsoft Excel and comma-separated-value (CSV) files. Additional functions
perform ASCII and low-level binary I/O, allowing you to develop custom functions for
working with any data format.

Sequence Alignments

You can select from a list of analysis methods to compare nucleotide or amino acid
sequences using pairwise or multiple sequence alignment functions.

1 Getting Started

1-10

Pairwise sequence alignment — Efficient implementations of standard algorithms
such as the Needleman-Wunsch (nwalign) and Smith-Waterman (swalign) algorithms
for pairwise sequence alignment. The toolbox also includes standard scoring matrices
such as the PAM and BLOSUM families of matrices (blosum, dayhoff, gonnet, nuc44,
pam). Visualize sequence similarities with seqdotplot and sequence alignment results
with showalignment.

Multiple sequence alignment — Functions for multiple sequence alignment
(multialign, profalign) and functions that support multiple sequences
(multialignread, fastaread, showalignment). There is also a graphical interface
(seqalignviewer) for viewing the results of a multiple sequence alignment and
manually making adjustment.

Multiple sequence profiles — Implementations for multiple alignment and
profile hidden Markov model algorithms (gethmmprof, gethmmalignment,
gethmmtree, pfamhmmread, hmmprofalign, hmmprofestimate, hmmprofgenerate,
hmmprofmerge, hmmprofstruct, showhmmprof).

Biological codes — Look up the letters or numeric equivalents for commonly used
biological codes (aminolookup, baselookup, geneticcode, revgeneticcode).

Sequence Utilities and Statistics

You can manipulate and analyze your sequences to gain a deeper understanding of the
physical, chemical, and biological characteristics of your data. Use a graphical user
interface (GUI) with many of the sequence functions in the toolbox (seqviewer).

Sequence conversion and manipulation — The toolbox provides routines for common
operations, such as converting DNA or RNA sequences to amino acid sequences, that
are basic to working with nucleic acid and protein sequences (aa2int, aa2nt, dna2rna,
rna2dna, int2aa, int2nt, nt2aa, nt2int, seqcomplement, seqrcomplement,
seqreverse).

You can manipulate your sequence by performing an in silico digestion with restriction
endonucleases (restrict) and proteases (cleave).

Sequence statistics — Determine various statistics about a sequence (aacount,
basecount, codoncount, dimercount, nmercount, ntdensity, codonbias,
cpgisland, oligoprop), search for specific patterns within a sequence (seqshowwords,
seqwordcount), or search for open reading frames (seqshoworfs). In addition, you can
create random sequences for test cases (randseq).

 Features and Functions

1-11

Sequence utilities — Determine a consensus sequence from a set of multiply aligned
amino acid, nucleotide sequences (seqconsensus, or a sequence profile (seqprofile).
Format a sequence for display (seqdisp) or graphically show a sequence alignment with
frequency data (seqlogo).

Additional MATLAB functions efficiently handle string operations with regular
expressions (regexp, seq2regexp) to look for specific patterns in a sequence and search
through a library for string matches (seqmatch).

Look for possible cleavage sites in a DNA/RNA sequence by searching for palindromes
(palindromes).

Protein Property Analysis

You can use a collection of protein analysis methods to extract information from
your data. You can determine protein characteristics and simulate enzyme cleavage
reactions. The toolbox provides functions to calculate various properties of a protein
sequence, such as the atomic composition (atomiccomp), molecular weight (molweight),
and isoelectric point (isoelectric). You can cleave a protein with an enzyme
(cleave, rebasecuts) and create distance and Ramachandran plots for PDB data
(pdbdistplot, ramachandran). The toolbox contains a graphical user interface for
protein analysis (proteinplot) and plotting 3-D protein and other molecular structures
with information from molecule model files, such as PDB files (molviewer).

Amino acid sequence utilities — Calculate amino acid statistics for a sequence
(aacount) and get information about character codes (aminolookup).

Phylogenetic Analysis

You can use functions for phylogenetic tree building and analysis. There is also a GUI to
draw phylograms (trees).

Phylogenetic tree data — Read and write Newick-formatted tree files (phytreeread,
phytreewrite) into the MATLAB Workspace as phylogenetic tree objects (phytree).

Create a phylogenetic tree — Calculate the pairwise distance between biological
sequences (seqpdist), estimate the substitution rates (dnds, dndsml), build a
phylogenetic tree from pairwise distances (seqlinkage, seqneighjoin, reroot),
and view the tree in an interactive GUI that allows you to view, edit, and explore the
data (phytreeviewer or view). This GUI also allows you to prune branches, reorder,
rename, and explore distances.

1 Getting Started

1-12

Phylogenetic tree object methods — You can access the functionality of the
phytreeviewer GUI using methods for a phylogenetic tree object (phytree). Get
property values (get) and node names (getbyname). Calculate the patristic distances
between pairs of leaf nodes (pdist, weights) and draw a phylogenetic tree object
in a MATLAB Figure window as a phylogram, cladogram, or radial treeplot (plot).
Manipulate tree data by selecting branches and leaves using a specified criterion
(select, subtree) and removing nodes (prune). Compare trees (getcanonical) and
use Newick-formatted strings (getnewickstr).

Microarray Data Analysis

The MATLAB environment is widely used for microarray data analysis, including
reading, filtering, normalizing, and visualizing microarray data. However, the standard
normalization and visualization tools that scientists use can be difficult to implement.
The toolbox includes these standard functions:

Microarray data — Read Affymetrix GeneChip files (affyread) and plot data
(probesetplot), ImaGene results files (imageneread), SPOT files (sptread) and
Agilent microarray scanner files (agferead). Read GenePix GPR files (gprread)
and GAL files (galread). Get Gene Expression Omnibus (GEO) data from the Web
(getgeodata) and read GEO data from files (geosoftread).

A utility function (magetfield) extracts data from one of the microarray reader
functions (gprread, agferead, sptread, imageneread).

Microarray normalization and filtering — The toolbox provides a number of
methods for normalizing microarray data, such as lowess normalization (malowess)
and mean normalization (manorm), or across multiple arrays (quantilenorm). You
can use filtering functions to clean raw data before analysis (geneentropyfilter,
genelowvalfilter, generangefilter, genevarfilter), and calculate the range and
variance of values (exprprofrange, exprprofvar).

Microarray visualization — The toolbox contains routines for visualizing microarray
data. These routines include spatial plots of microarray data (maimage, redgreencmap),
box plots (maboxplot), loglog plots (maloglog), and intensity-ratio plots (mairplot).
You can also view clustered expression profiles (clustergram, redgreencmap). You can
create 2-D scatter plots of principal components from the microarray data (mapcaplot).

Microarray utility functions — Use the following functions to work with Affymetrix
GeneChip data sets. Get library information for a probe (probelibraryinfo), gene

 Features and Functions

1-13

information from a probe set (probesetlookup), and probe set values from CEL and
CDF information (probesetvalues). Show probe set information from NetAffx™
Analysis Center (probesetlink) and plot probe set values (probesetplot).

The toolbox accesses statistical routines to perform cluster analysis and to visualize
the results, and you can view your data through statistical visualizations such as
dendrograms, classification, and regression trees.

Microarray Data Storage

The toolbox includes functions, objects, and methods for creating, storing, and accessing
microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix object to
encapsulate data and metadata from a microarray experiment. A DataMatrix object
stores experimental data in a matrix, with rows typically corresponding to gene names
or probe identifiers, and columns typically corresponding to sample identifiers. A
DataMatrix object also stores metadata, including the gene names or probe identifiers (as
the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way
you reference data in a MATLAB array, that is, by using linear or logical indexing.
Alternately, you can reference this experimental data by gene (probe) identifiers and
sample identifiers. Indexing by these identifiers lets you quickly and conveniently access
subsets of the data without having to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects
by means of methods. These methods let you modify, combine, compare, analyze, plot,
and access information from DataMatrix objects. Additionally, you can easily extend the
functionality by using general element-wise functions, dmarrayfun and dmbsxfun, and
by manually accessing the properties of a DataMatrix object.

Note: For more information on creating and using DataMatrix objects, see “Representing
Expression Data Values in DataMatrix Objects”.

Mass Spectrometry Data Analysis

The mass spectrometry functions preprocess and classify raw data from SELDI-TOF and
MALDI-TOF spectrometers and use statistical learning functions to identify patterns.

1 Getting Started

1-14

Reading raw data — Load raw mass/charge and ion intensity data from comma-
separated-value (CSV) files, or read a JCAMP-DX-formatted file with mass spectrometry
data (jcampread) into the MATLAB environment.

You can also have data in TXT files and use the importdata function.

Preprocessing raw data — Resample high-resolution data to a lower resolution
(msresample) where the extra data points are not needed. Correct the baseline
(msbackadj). Align a spectrum to a set of reference masses (msalign) and visually
verify the alignment (msheatmap). Normalize the area between spectra for comparing
(msnorm), and filter out noise (mslowess and mssgolay).

Spectrum analysis — Load spectra into a GUI (msviewer) for selecting mass peaks
and further analysis.

The following graphic illustrates the roles of the various mass spectrometry functions in
the toolbox.

 Features and Functions

1-15

Peak Lists
 (Centroided Data)

Semicontinuous Signal

mspeaks msppresample

msresample

mzxml2peaks

mzxmlread

Plot

msheatmap

msdotplot

mzXML File

mzXML Structure

Plot

Mass
Spectra
Viewer

msviewer

Raw
 Data

Reconstructed
 Data

1 Getting Started

1-16

Graph Theory Functions

Graph theory functions in the toolbox apply basic graph theory algorithms to sparse
matrices. A sparse matrix represents a graph, any nonzero entries in the matrix
represent the edges of the graph, and the values of these entries represent the associated
weight (cost, distance, length, or capacity) of the edge. Graph algorithms that use the
weight information will cancel the edge if a NaN or an Inf is found. Graph algorithms
that do not use the weight information will consider the edge if a NaN or an Inf is found,
because these algorithms look only at the connectivity described by the sparse matrix
and not at the values stored in the sparse matrix.

Sparse matrices can represent four types of graphs:

• Directed Graph — Sparse matrix, either double real or logical. Row (column)
index indicates the source (target) of the edge. Self-loops (values in the diagonal) are
allowed, although most of the algorithms ignore these values.

• Undirected Graph — Lower triangle of a sparse matrix, either double real or
logical. An algorithm expecting an undirected graph ignores values stored in the
upper triangle of the sparse matrix and values in the diagonal.

• Direct Acyclic Graph (DAG) — Sparse matrix, double real or logical, with zero
values in the diagonal. While a zero-valued diagonal is a requirement of a DAG, it
does not guarantee a DAG. An algorithm expecting a DAG will not test for cycles
because this will add unwanted complexity.

• Spanning Tree — Undirected graph with no cycles and with one connected
component.

There are no attributes attached to the graphs; sparse matrices representing all four
types of graphs can be passed to any graph algorithm. All functions will return an error
on nonsquare sparse matrices.

Graph algorithms do not pretest for graph properties because such tests can introduce
a time penalty. For example, there is an efficient shortest path algorithm for DAG,
however testing if a graph is acyclic is expensive compared to the algorithm. Therefore, it
is important to select a graph theory function and properties appropriate for the type of
the graph represented by your input matrix. If the algorithm receives a graph type that
differs from what it expects, it will either:

• Return an error when it reaches an inconsistency. For example, if you pass a cyclic
graph to the graphshortestpath function and specify Acyclic as the method
property.

 Features and Functions

1-17

• Produce an invalid result. For example, if you pass a directed graph to a function
with an algorithm that expects an undirected graph, it will ignore values in the upper
triangle of the sparse matrix.

The graph theory functions include graphallshortestpaths, graphconncomp,
graphisdag, graphisomorphism, graphisspantree, graphmaxflow,
graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, and
graphtraverse.

Graph Visualization

The toolbox includes functions, objects, and methods for creating, viewing, and
manipulating graphs such as interactive maps, hierarchy plots, and pathways. This
allows you to view relationships between data.

The object constructor function (biograph) lets you create a biograph object to hold
graph data. Methods of the biograph object let you calculate the position of nodes
(dolayout), draw the graph (view), get handles to the nodes and edges (getnodesbyid
and getedgesbynodeid) to further query information, and find relations between the
nodes (getancestors, getdescendants, and getrelatives). There are also methods
that apply basic graph theory algorithms to the biograph object.

Various properties of a biograph object let you programmatically change the properties of
the rendered graph. You can customize the node representation, for example, drawing pie
charts inside every node (CustomNodeDrawFcn). Or you can associate your own callback
functions to nodes and edges of the graph, for example, opening a Web page with more
information about the nodes (NodeCallback and EdgeCallback).

Statistical Learning and Visualization

You can classify and identify features in data sets, set up cross-validation experiments,
and compare different classification methods.

The toolbox provides functions that build on the classification and statistical learning
tools in the Statistics and Machine Learning Toolbox software (classify, kmeans, and
treefit).

These functions include imputation tools (knnimpute), and K-nearest neighbor
classifiers (knnclassify).

1 Getting Started

1-18

Other functions include set up of cross-validation experiments (crossvalind) and
comparison of the performance of different classification methods (classperf).
In addition, there are tools for selecting diversity and discriminating features
(rankfeatures, randfeatures).

Prototyping and Development Environment

The MATLAB environment lets you prototype and develop algorithms and easily
compare alternatives.

• Integrated environment — Explore biological data in an environment that
integrates programming and visualization. Create reports and plots with the built-in
functions for mathematics, graphics, and statistics.

• Open environment — Access the source code for the toolbox functions. The toolbox
includes many of the basic bioinformatics functions you will need to use, and it
includes prototypes for some of the more advanced functions. Modify these functions
to create your own custom solutions.

• Interactive programming language — Test your ideas by typing functions that
are interpreted interactively with a language whose basic data element is an array.
The arrays do not require dimensioning and allow you to solve many technical
computing problems,

Using matrices for sequences or groups of sequences allows you to work efficiently and
not worry about writing loops or other programming controls.

• Programming tools — Use a visual debugger for algorithm development and
refinement and an algorithm performance profiler to accelerate development.

Data Visualization

You can visually compare pairwise sequence alignments, multiply aligned sequences,
gene expression data from microarrays, and plot nucleic acid and protein characteristics.
The 2-D and volume visualization features let you create custom graphical
representations of multidimensional data sets. You can also create montages and
overlays, and export finished graphics to an Adobe® PostScript® image file or copy
directly into Microsoft PowerPoint®.

 Features and Functions

1-19

Algorithm Sharing and Application Deployment

The open MATLAB environment lets you share your analysis solutions with other
users, and it includes tools to create custom software applications. With the addition of
MATLAB Compiler and MATLAB Compiler SDK, you can create standalone applications
independent of the MATLAB environment.

• Share algorithms with other users — You can share data analysis algorithms
created in the MATLAB language across all supported platforms by giving files to
other users. You can also create GUIs within the MATLAB environment using the
Graphical User Interface Development Environment (GUIDE).

• Deploy MATLAB GUIs — Create a GUI within the MATLAB environment using
GUIDE, and then use MATLAB Compiler software to create a standalone GUI
application that runs separately from the MATLAB environment.

• Create dynamic link libraries (DLLs) — Use MATLAB Compiler software to
create DLLs for your functions, and then link these libraries to other programming
environments such as C and C++.

• Create COM objects — Use MATLAB Compiler SDK to create COM objects, and
then use a COM-compatible programming environment (Visual Basic®) to create a
standalone application.

• Create Excel add-ins — Use MATLAB Compiler to create Excel add-in functions,
and then use these functions with Excel spreadsheets.

• Create Java classes — Use MATLAB Compiler SDK to automatically generate Java
classes from algorithms written in the MATLAB programming language. You can run
these classes outside the MATLAB environment.

1 Getting Started

1-20

Exchange Bioinformatic Data Between Excel and MATLAB

In this section...

“Using Excel and MATLAB Together” on page 1-20
“About the Example” on page 1-20
“Before Running the Example” on page 1-20
“Running the Example for the Entire Data Set” on page 1-21
“Editing Formulas to Run the Example on a Subset of the Data” on page 1-24
“Using the Spreadsheet Link EX Interface to Interact With the Data in MATLAB” on
page 1-25

Using Excel and MATLAB Together

If you have bioinformatic data in an Excel (2007 or 2010) spreadsheet, use Spreadsheet
Link EX to:

• Connect Excel with the MATLAB Workspace to exchange data
• Use MATLAB and Bioinformatics Toolbox computational and visualization functions

About the Example

Note: The following example assumes you have Spreadsheet Link EX software installed
on your system.

The Excel file used in the following example contains data from DeRisi, J.L., Iyer, V.R.,
and Brown, P.O. (Oct. 24, 1997). Exploring the metabolic and genetic control of gene
expression on a genomic scale. Science 278(5338), 680–686. PMID: 9381177. The data
was filtered using the steps described in Gene Expression Profile Analysis.

Before Running the Example

1 If not already done, modify your system path to include the MATLAB root folder as
described in the Spreadsheet Link EX documentation.

 Exchange Bioinformatic Data Between Excel and MATLAB

1-21

2 If not already done, enable the Spreadsheet Link EX Add-In as described in “Set
Spreadsheet Link EX Preferences and MATLAB Version” in the Spreadsheet Link
EX documentation.

3 Close MATLAB and Excel if they are open.
4 Start Excel 2007 or 2010 software. MATLAB and Spreadsheet Link EX software

automatically start.
5 From Excel, open the following file provided with the Bioinformatics Toolbox

software:

matlabroot\toolbox\bioinfo\biodemos\Filtered_Yeastdata.xlsm

Note: matlabroot is the MATLAB root folder, which is where MATLAB software is
installed on your system.

6 In the Excel software, enable macros. Click the Developer tab, and then select
Macro Security from the Code group. (If the Developer tab is not displayed on the
Excel ribbon, consult Excel Help to display it.)

Running the Example for the Entire Data Set

1 In the provided Excel file, note that columns A through H contain data from DeRisi
et al. Also note that cells J5, J6, J7, and J12 contain formulas using Spreadsheet
Link EX functions MLPutMatrix and MLEvalString.

Tip To view a cell's formula, select the cell, and then view the formula in the formula

bar at the top of the Excel window.
2 Execute the formulas in cells J5, J6, J7, and J12, by selecting the cell, pressing F2,

and then pressing Enter.

Each of the first three cells contains a formula using the Spreadsheet Link EX
function MLPutMatrix, which creates a MATLAB variable from the data in the
spreadsheet. Cell J12 contains a formula using the Spreadsheet Link EX function
MLEvalString, which runs the Bioinformatics Toolbox clustergram function
using the three variables as input. For more information on adding formulas using
Spreadsheet Link EX functions, see “Enter Functions into Worksheet Cells” in the
Spreadsheet Link EX documentation.

1 Getting Started

1-22

Cells J5, J6, and J7 contain formulas
that use the MLPutMatrix function
to create three MATLAB variables.

Cell J12 contains a formula
that uses the MLEvalString function
to run the Bioinformatics Toolbox function
clustergram.

Cell J17 contains a formula
that uses a macro function,
Clustergram, created in
Visual Basic Editor.

3 Note that cell J17 contains a formula using a macro function Clustergram, which
was created in the Visual Basic Editor. Running this macro does the same as the
formulas in cells J5, J6, J7, and J12. Optionally, view the Clustergram macro
function by clicking the Developer tab, and then clicking the Visual Basic button

 Exchange Bioinformatic Data Between Excel and MATLAB

1-23

. (If the Developer tab is not on the Excel ribbon, consult Excel Help to display
it.)

For more information on creating macros using Visual Basic Editor, see “Use
Spreadsheet Link EX Functions in Macros” in the Spreadsheet Link EX
documentation.

4 Execute the formula in cell J17 to analyze and visualize the data:

a Select cell J17.
b Press F2.
c Press Enter.

The macro function Clustergram runs creating three MATLAB variables (data,
Genes, and TimeSteps) and displaying a Clustergram window containing
dendrograms and a heat map of the data.

1 Getting Started

1-24

Editing Formulas to Run the Example on a Subset of the Data

1 Edit the formulas in cells J5 and J6 to analyze a subset of the data. Do this by
editing the formulas’ cell ranges to include data for only the first 30 genes:

a Select cell J5, and then press F2 to display the formula for editing. Change
H617 to H33, and then press Enter.

b Select cell J6, then press F2 to display the formula for editing. Change A617 to
A33, and then press Enter.

2 Run the formulas in cells J5, J6, J7, and J12 to analyze and visualize a subset of the
data:

a Select cell J5, press F2, and then press Enter.
b Select cell J6, press F2, and then press Enter.
c Select cell J7, press F2, and then press Enter.
d Select cell J12, press F2, and then press Enter.

 Exchange Bioinformatic Data Between Excel and MATLAB

1-25

Using the Spreadsheet Link EX Interface to Interact With the Data in
MATLAB

Use the MATLAB group on the right side of the Home tab to interact with the data:

1 Getting Started

1-26

For example, create a variable in MATLAB containing a 3-by-7 matrix of the data, plot
the data in a Figure window, and then add the plot to your spreadsheet:

1 Click-drag to select cells B5 through H7.

2 From the MATLAB group, select Send data to MATLAB.
3 Type YAGenes for the variable name, and then click OK.

The variable YAGenes is added to the MATLAB Workspace as a 3-by-7 matrix.
4 From the MATLAB group, select Run MATLAB command.
5 Type plot(YAGenes') for the command, and then click OK.

A Figure window displays a plot of the data.

Note: Make sure you use the ' (transpose) symbol when plotting the data in this
step. You need to transpose the data in YAGenes so that it plots as three genes over
seven time intervals.

 Exchange Bioinformatic Data Between Excel and MATLAB

1-27

6 Select cell J20, and then click from the MATLAB group, select Get MATLAB
figure.

The figure is added to the spreadsheet.

1 Getting Started

1-28

Get Information from Web Database

In this section...

“What Are get Functions?” on page 1-28
“Creating the getpubmed Function” on page 1-29

What Are get Functions?

Bioinformatics Toolbox includes several get functions that retrieve information from
various Web databases. Additionally, with some basic MATLAB programming skills, you
can create your own get function to retrieve information from a specific Web database.

The following procedure illustrates how to create a function to retrieve information from
the NCBI PubMed database and read the information into a MATLAB structure. The
NCBI PubMed database contains biomedical literature citations and abstracts.

 Get Information from Web Database

1-29

Creating the getpubmed Function

The following procedure shows you how to create a function named getpubmed using
the MATLAB Editor. This function will retrieve citation and abstract information from
PubMed literature searches and write the data to a MATLAB structure.

Specifically, this function will take one or more search terms, submit them to the
PubMed database for a search, then return a MATLAB structure or structure array, with
each structure containing information for an article found by the search. The returned
information will include a PubMed identifier, publication date, title, abstract, authors,
and citation.

The function will also include property name/property value pairs that let the user of the
function limit the search by publication date and limit the number of records returned.

1 From MATLAB, open the MATLAB Editor by selecting File > New > Function.
2 Define the getpubmed function, its input arguments, and return values by typing:

function pmstruct = getpubmed(searchterm,varargin)

% GETPUBMED Search PubMed database & write results to MATLAB structure

3 Add code to do some basic error checking for the required input SEARCHTERM.

% Error checking for required input SEARCHTERM

if(nargin<1)

 error('GETPUBMED:NotEnoughInputArguments',...

 'SEARCHTERM is missing.');

end

4 Create variables for the two property name/property value pairs, and set their
default values.

% Set default settings for property name/value pairs,

% 'NUMBEROFRECORDS' and 'DATEOFPUBLICATION'

maxnum = 50; % NUMBEROFRECORDS default is 50

pubdate = ''; % DATEOFPUBLICATION default is an empty string

5 Add code to parse the two property name/property value pairs if provided as input.

% Parsing the property name/value pairs

num_argin = numel(varargin);

for n = 1:2:num_argin

 arg = varargin{n};

 switch lower(arg)

1 Getting Started

1-30

 % If NUMBEROFRECORDS is passed, set MAXNUM

 case 'numberofrecords'

 maxnum = varargin{n+1};

 % If DATEOFPUBLICATION is passed, set PUBDATE

 case 'dateofpublication'

 pubdate = varargin{n+1};

 end

end

6 You access the PubMed database through a search URL, which submits a search
term and options, and then returns the search results in a specified format. This
search URL is comprised of a base URL and defined parameters. Create a variable
containing the base URL of the PubMed database on the NCBI Web site.

% Create base URL for PubMed db site

baseSearchURL = 'http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search';

7 Create variables to contain five defined parameters that the getpubmed function
will use, namely, db (database), term (search term), report (report type, such as
MEDLINE®), format (format type, such as text), and dispmax (maximum number of
records to display).

% Set db parameter to pubmed

dbOpt = '&db=pubmed';

% Set term parameter to SEARCHTERM and PUBDATE

% (Default PUBDATE is '')

termOpt = ['&term=',searchterm,'+AND+',pubdate];

% Set report parameter to medline

reportOpt = '&report=medline';

% Set format parameter to text

formatOpt = '&format=text';

% Set dispmax to MAXNUM

% (Default MAXNUM is 50)

maxOpt = ['&dispmax=',num2str(maxnum)];

8 Create a variable containing the search URL from the variables created in the
previous steps.

% Create search URL

searchURL = [baseSearchURL,dbOpt,termOpt,reportOpt,formatOpt,maxOpt];

 Get Information from Web Database

1-31

9 Use the urlread function to submit the search URL, retrieve the search results,
and return the results (as text in the MEDLINE report type) in medlineText, a
character array.

medlineText = urlread(searchURL);

10 Use the MATLAB regexp function and regular expressions to parse and extract
the information in medlineText into hits, a cell array, where each cell contains
the MEDLINE-formatted text for one article. The first input is the character array
to search, the second input is a search expression, which tells the regexp function
to find all records that start with PMID-, while the third input, 'match', tells
the regexp function to return the actual records, rather than the positions of the
records.

hits = regexp(medlineText,'PMID-.*?(?=PMID|</pre>$)','match');

11 Instantiate the pmstruct structure returned by getpubmed to contain six fields.

pmstruct = struct('PubMedID','','PublicationDate','','Title','',...

 'Abstract','','Authors','','Citation','');

12 Use the MATLAB regexp function and regular expressions to loop through each
article in hits and extract the PubMed ID, publication date, title, abstract, authors,
and citation. Place this information in the pmstruct structure array.
for n = 1:numel(hits)

 pmstruct(n).PubMedID = regexp(hits{n},'(?<=PMID-).*?(?=\n)','match', 'once');

 pmstruct(n).PublicationDate = regexp(hits{n},'(?<=DP -).*?(?=\n)','match', 'once');

 pmstruct(n).Title = regexp(hits{n},'(?<=TI -).*?(?=PG -|AB -)','match', 'once');

 pmstruct(n).Abstract = regexp(hits{n},'(?<=AB -).*?(?=AD -)','match', 'once');

 pmstruct(n).Authors = regexp(hits{n},'(?<=AU -).*?(?=\n)','match');

 pmstruct(n).Citation = regexp(hits{n},'(?<=SO -).*?(?=\n)','match', 'once');

end

13 Select File > Save As.

When you are done, your file should look similar to the getpubmed.m file included
with the Bioinformatics Toolbox software. The sample getpubmed.m file, including
help, is located at:

matlabroot\toolbox\bioinfo\biodemos\getpubmed.m

Note: The notation matlabroot is the MATLAB root directory, which is the
directory where the MATLAB software is installed on your system.

2

High-Throughput Sequence Analysis

• “Work with Large Multi-Entry Text Files” on page 2-2
• “Manage Short-Read Sequence Data in Objects” on page 2-8
• “Store and Manage Feature Annotations in Objects” on page 2-21
• “Visualize and Investigate Short-Read Alignments” on page 2-28
• “Identifying Differentially Expressed Genes from RNA-Seq Data” on page 2-40
• “Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data” on page

2-60
• “Exploring Genome-wide Differences in DNA Methylation Profiles” on page 2-82

2 High-Throughput Sequence Analysis

2-2

Work with Large Multi-Entry Text Files

In this section...

“Overview” on page 2-2
“What Files Can You Access?” on page 2-2
“Before You Begin” on page 2-3
“Create a BioIndexedFile Object to Access Your Source File” on page 2-4
“Determine the Number of Entries Indexed By a BioIndexedFile Object” on page
2-4
“Retrieve Entries from Your Source File” on page 2-5
“Read Entries from Your Source File” on page 2-5

Overview

Many biological experiments produce huge data files that are difficult to access due
to their size, which can cause memory issues when reading the file into the MATLAB
Workspace. You can construct a BioIndexedFile object to access the contents of a large
text file containing nonuniform size entries, such as sequences, annotations, and cross-
references to data sets. The BioIndexedFile object lets you quickly and efficiently
access this data without loading the source file into memory.

You can use the BioIndexedFile object to access individual entries or a subset of
entries when the source file is too big to fit into memory. You can access entries using
indices or keys. You can read and parse one or more entries using provided interpreters
or a custom interpreter function.

Use the BioIndexedFile object in conjunction with your large source file to:

• Access a subset of the entries for validation or further analysis.
• Parse entries using a custom interpreter function.

What Files Can You Access?

You can use the BioIndexedFile object to access large text files.

Your source file can have these application-specific formats:

 Work with Large Multi-Entry Text Files

2-3

• FASTA
• FASTQ
• SAM

Your source file can also have these general formats:

• Table — Tab-delimited table with multiple columns. Keys can be in any column.
Rows with the same key are considered separate entries.

• Multi-row Table — Tab-delimited table with multiple columns. Keys can be in
any column. Contiguous rows with the same key are considered a single entry.
Noncontiguous rows with the same key are considered separate entries.

• Flat — Flat file with concatenated entries separated by a character string, typically
//. Within an entry, the key is separated from the rest of the entry by a white space.

Before You Begin

Before constructing a BioIndexedFile object, locate your source file on your hard drive
or a local network.

When you construct a BioIndexedFile object from your source file for the first time,
you also create an auxiliary index file, which by default is saved to the same location as
your source file. However, if your source file is in a read-only location, you can specify a
different location to save the index file.

Tip If you construct a BioIndexedFile object from your source file on subsequent
occasions, it takes advantage of the existing index file, which saves time. However,
the index file must be in the same location or a location specified by the subsequent
construction syntax.

Tip If insufficient memory is not an issue when accessing your source file, you may want
to try an appropriate read function, such as genbankread, for importing data from
GenBank files. .

Additionally, several read functions such as fastaread, fastqread, samread, and
sffread include a Blockread property, which lets you read a subset of entries from a
file, thus saving memory.

2 High-Throughput Sequence Analysis

2-4

Create a BioIndexedFile Object to Access Your Source File

To construct a BioIndexedFile object from a multi-row table file:

1 Create a variable containing the full absolute path of your source file. For your
source file, use the yeastgenes.sgd file, which is included with the Bioinformatics
Toolbox software.

sourcefile = which('yeastgenes.sgd');

2 Use the BioIndexedFile constructor function to construct a BioIndexedFile
object from the yeastgenes.sgd source file, which is a multi-row table file. Save
the index file in the Current Folder. Indicate that the source file keys are in column
3. Also, indicate that the header lines in the source file are prefaced with !, so the
constructor ignores them.

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...

 'KeyColumn', 3, 'HeaderPrefix','!')

The BioIndexedFile constructor function constructs gene2goObj, a
BioIndexedFile object, and also creates an index file with the same name as the
source file, but with an IDX extension. It stores this index file in the Current Folder
because we specified this location. However, the default location for the index file is
the same location as the source file.

Caution Do not modify the index file. If you modify it, you can get invalid results.
Also, the constructor function cannot use a modified index file to construct future
objects from the associated source file.

Determine the Number of Entries Indexed By a BioIndexedFile Object

To determine the number of entries indexed by a BioIndexedFile object, use the
NumEntries property of the BioIndexedFile object. For example, for the gene2goObj
object:

gene2goObj.NumEntries

ans =

 6476

 Work with Large Multi-Entry Text Files

2-5

Note: For a list and description of all properties of a BioIndexedFile object, see
BioIndexedFile class.

Retrieve Entries from Your Source File

Retrieve entries from your source file using either:

• The index of the entry
• The entry key

Retrieve Entries Using Indices

Use the getEntryByIndex method to retrieve a subset of entries from your source file
that correspond to specified indices. For example, retrieve the first 12 entries from the
yeastgenes.sgd source file:

subset_entries = getEntryByIndex(gene2goObj, [1:12]);

Retrieve Entries Using Keys

Use the getEntryByKey method to retrieve a subset of entries from your source file that
are associated with specified keys. For example, retrieve all entries with keys of AAC1
and AAD10 from the yeastgenes.sgd source file:

subset_entries = getEntryByKey(gene2goObj, {'AAC1' 'AAD10'});

The output subset_entries is a single string of concatenated entries. Because the keys
in the yeastgenes.sgd source file are not unique, this method returns all entries that
have a key of AAC1 or AAD10.

Read Entries from Your Source File

The BioIndexedFile object includes a read method, which you can use to read and
parse a subset of entries from your source file. The read method parses the entries using
an interpreter function specified by the Interpreter property of the BioIndexedFile
object.

Set the Interpreter Property

Before using the read method, make sure the Interpreter property of the
BioIndexedFile object is set appropriately.

2 High-Throughput Sequence Analysis

2-6

If you constructed a BioIndexedFile
object from ...

The Interpreter property ...

A source file with an application-
specific format (FASTA, FASTQ, or
SAM)

By default is a handle to a function appropriate
for that file type and typically does not require
you to change it.

A source file with a table, multi-row
table, or flat format

By default is [], which means the interpreter is
an anonymous function in which the output is
equivalent to the input. You can change this to a
handle to a function that accepts a single string
of one or more concatenated entries and returns
a structure or an array of structures containing
the interpreted data.

There are two ways to set the Interpreter property of the BioIndexedFile object:

• When constructing the BioIndexedFile object, use the Interpreter property
name/property value pair

• After constructing the BioIndexedFile object, set the Interpreter property

Note: For more information on setting the Interpreter property of a BioIndexedFile
object, see BioIndexedFile class.

Read a Subset of Entries

The read method reads and parses a subset of entries that you specify using either entry
indices or keys.

Example

To quickly find all the gene ontology (GO) terms associated with a particular gene
because the entry keys are gene names:

1 Set the Interpreter property of the gene2goObj BioIndexedFile object to a
handle to a function that reads entries and returns only the column containing the
GO term. In this case the interpreter is a handle to an anonymous function that
accepts strings and extracts strings that start with the characters GO.

gene2goObj.Interpreter = @(x) regexp(x,'GO:\d+','match')

 Work with Large Multi-Entry Text Files

2-7

2 Read only the entries that have a key of YAT2, and return their GO terms.

GO_YAT2_entries = read(gene2goObj, 'YAT2')

GO_YAT2_entries =

'GO:0004092' 'GO:0005737' 'GO:0006066' 'GO:0006066' 'GO:0009437'

2 High-Throughput Sequence Analysis

2-8

Manage Short-Read Sequence Data in Objects

In this section...

“Overview” on page 2-8
“Represent Sequence and Quality Data in a BioRead Object” on page 2-9
“Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap Object” on
page 2-10
“Retrieve Information from a BioRead or BioMap Object” on page 2-14
“Set Information in a BioRead or BioMap Object” on page 2-16
“Determine Coverage of a Reference Sequence” on page 2-17
“Construct Sequence Alignments to a Reference Sequence” on page 2-18
“Filter Read Sequences Using SAM Flags” on page 2-19

Overview

High-throughput sequencing instruments produce large amounts of short-read sequence
data that can be challenging to store and manage. Using objects to contain this data lets
you easily access, manipulate, and filter the data.

Bioinformatics Toolbox includes two objects for working with short-read sequence data.

Object Contains This Information Construct from One of These

BioRead • Sequence headers
• Read sequences
• Sequence qualities (base calling)

• FASTQ file
• SAM file
• FASTQ structure (created using

the fastqread function)
• SAM structure (created using

the samread function)
• Cell arrays containing

header, sequence, and quality
information (created using the
fastqread function)

BioMap • Sequence headers
• Read sequences

• SAM file
• BAM file

 Manage Short-Read Sequence Data in Objects

2-9

Object Contains This Information Construct from One of These

• Sequence qualities (base calling)
• Sequence alignment and

mapping information (relative
to a single reference sequence),
including mapping quality

• SAM structure (created using
the samread function)

• BAM structure (created using
the bamread function)

• Cell arrays containing header,
sequence, quality, and mapping/
alignment information (created
using the samread or bamread
function)

Represent Sequence and Quality Data in a BioRead Object

Prerequisites

A BioRead object represents a collection of short-read sequences. Each element in the
object is associated with a sequence, sequence header, and sequence quality information.

Construct a BioRead object in one of two ways:

• Indexed — The data remains in the source file. Constructing the object and accessing
its contents is memory efficient. However, you cannot modify object properties, other
than the Name property. This is the default method if you construct a BioRead object
from a FASTQ- or SAM-formatted file.

• In Memory — The data is read into memory. Constructing the object and accessing
its contents is limited by the amount of available memory. However, you can modify
object properties. When you construct a BioRead object from a FASTQ structure or
cell arrays, the data is read into memory. When you construct a BioRead object from
a FASTQ- or SAM-formatted file, use the InMemory name-value pair argument to
read the data into memory.

Construct a BioRead Object from a FASTQ- or SAM-Formatted File

Note: This example constructs a BioRead object from a FASTQ-formatted file. Use
similar steps to construct a BioRead object from a SAM-formatted file.

Use the BioRead constructor function to construct a BioRead object from a FASTQ-
formatted file and set the Name property:

2 High-Throughput Sequence Analysis

2-10

BRObj1 = BioRead('SRR005164_1_50.fastq', 'Name', 'MyObject')

BRObj1 =

 BioRead with properties:

 Quality: [50x1 File indexed property]

 Sequence: [50x1 File indexed property]

 Header: [50x1 File indexed property]

 NSeqs: 50

 Name: 'MyObject'

The constructor function construct a BioRead object and, if an index file does not already
exist, it also creates an index file with the same file name, but with an .IDX extension.
This index file, by default, is stored in the same location as the source file.

Caution Your source file and index file must always be in sync.

• After constructing a BioRead object, do not modify the index file, or you can get
invalid results when using the existing object or constructing new objects.

• If you modify the source file, delete the index file, so the object constructor creates a
new index file when constructing new objects.

Note: Because you constructed this BioRead object from a source file, you cannot modify
the properties (except for Name) of the BioRead object.

Represent Sequence, Quality, and Alignment/Mapping Data in a BioMap
Object

Prerequisites

A BioMap object represents a collection of short-read sequences that map against a
single reference sequence. Each element in the object is associated with a read sequence,
sequence header, sequence quality information, and alignment/mapping information.

When constructing a BioMap object from a BAM file, the maximum size of the file is
limited by your operating system and available memory.

Construct a BioMap object in one of two ways:

 Manage Short-Read Sequence Data in Objects

2-11

• Indexed — The data remains in the source file. Constructing the object and accessing
its contents is memory efficient. However, you cannot modify object properties, other
than the Name property. This is the default method if you construct a BioMap object
from a SAM- or BAM-formatted file.

• In Memory — The data is read into memory. Constructing the object and accessing
its contents is limited by the amount of available memory. However, you can modify
object properties. When you construct a BioMap object from a structure, the data
stays in memory. When you construct a BioMap object from a SAM- or BAM-
formatted file, use the InMemory name-value pair argument to read the data into
memory.

Construct a BioMap Object from a SAM- or BAM-Formatted File

Note: This example constructs a BioMap object from a SAM-formatted file. Use similar
steps to construct a BioMap object from a BAM-formatted file.

1 If you do not know the number and names of the reference sequences in your
source file, determine them using the saminfo or baminfo function and the
ScanDictionary name-value pair argument.

samstruct = saminfo('ex2.sam', 'ScanDictionary', true);

samstruct.ScannedDictionary

ans =

 'seq1'

 'seq2'

Tip The previous syntax scans the entire SAM file, which is time consuming.
If you are confident that the Header information of the SAM file is correct,
omit the ScanDictionary name-value pair argument, and inspect the
SequenceDictionary field instead.

2 Use the BioMap constructor function to construct a BioMap object from the SAM
file and set the Name property. Because the SAM-formatted file in this example,
ex2.sam, contains multiple reference sequences, use the SelectRef name-value
pair argument to specify one reference sequence, seq1:

BMObj2 = BioMap('ex2.sam', 'SelectRef', 'seq1', 'Name', 'MyObject')

2 High-Throughput Sequence Analysis

2-12

BMObj2 =

 BioMap with properties:

 SequenceDictionary: 'seq1'

 Reference: [1501x1 File indexed property]

 Signature: [1501x1 File indexed property]

 Start: [1501x1 File indexed property]

 MappingQuality: [1501x1 File indexed property]

 Flag: [1501x1 File indexed property]

 MatePosition: [1501x1 File indexed property]

 Quality: [1501x1 File indexed property]

 Sequence: [1501x1 File indexed property]

 Header: [1501x1 File indexed property]

 NSeqs: 1501

 Name: 'MyObject'

The constructor function constructs a BioMap object and, if index files do not already
exist, it also creates one or two index files:

• If constructing from a SAM-formatted file, it creates one index file that has the same
file name as the source file, but with an .IDX extension. This index file, by default, is
stored in the same location as the source file.

• If constructing from a BAM-formatted file, it creates two index files that have
the same file name as the source file, but one with a .BAI extension and one with
a .LINEARINDEX extension. These index files, by default, are stored in the same
location as the source file.

Caution Your source file and index files must always be in sync.

• After constructing a BioMap object, do not modify the index files, or you can get
invalid results when using the existing object or constructing new objects.

• If you modify the source file, delete the index files, so the object constructor creates
new index files when constructing new objects.

Note: Because you constructed this BioMap object from a source file, you cannot modify
the properties (except for Name and Reference) of the BioMap object.

 Manage Short-Read Sequence Data in Objects

2-13

Construct a BioMap Object from a SAM or BAM Structure

Note: This example constructs a BioMap object from a SAM structure using samread.
Use similar steps to construct a BioMap object from a BAM structure using bamread.

1 Use the samread function to create a SAM structure from a SAM-formatted file:

SAMStruct = samread('ex2.sam');

2 To construct a valid BioMap object from a SAM-formatted file, the file must contain
only one reference sequence. Determine the number and names of the reference
sequences in your SAM-formatted file using the unique function to find unique
names in the ReferenceName field of the structure:

unique({SAMStruct.ReferenceName})

ans =

 'seq1' 'seq2'

3 Use the BioMap constructor function to construct a BioMap object from a SAM
structure. Because the SAM structure contains multiple reference sequences, use the
SelectRef name-value pair argument to specify one reference sequence, seq1:

BMObj1 = BioMap(SAMStruct, 'SelectRef', 'seq1')

BMObj1 =

 BioMap with properties:

 SequenceDictionary: {'seq1'}

 Reference: {1501x1 cell}

 Signature: {1501x1 cell}

 Start: [1501x1 uint32]

 MappingQuality: [1501x1 uint8]

 Flag: [1501x1 uint16]

 MatePosition: [1501x1 uint32]

 Quality: {1501x1 cell}

 Sequence: {1501x1 cell}

 Header: {1501x1 cell}

 NSeqs: 1501

 Name: ''

2 High-Throughput Sequence Analysis

2-14

Retrieve Information from a BioRead or BioMap Object

You can retrieve all or a subset of information from a BioRead or BioMap object.

Retrieve a Property from a BioRead or BioMap Object

You can retrieve a specific property from elements in a BioRead or BioMap object.

For example, to retrieve all headers from a BioRead object, use the Header property as
follows:

allHeaders = BRObj1.Header;

This syntax returns a cell array containing the headers for all elements in the BioRead
object.

Similarly, to retrieve all start positions of aligned read sequences from a BioMap object,
use the Start property of the object:

allStarts = BMObj1.Start;

This syntax returns a vector containing the start positions of aligned read sequences with
respect to the position numbers in the reference sequence in a BioMap object.

Retrieve Multiple Properties from a BioRead or BioMap Object

You can retrieve multiple properties from a BioRead or BioMap object in a single
command using the get method. For example, to retrieve both start positions and
headers information of a BioMap object, use the get method as follows:

multiProp = get(BMObj1, {'Start', 'Header'});

This syntax returns a cell array containing all start positions and headers information of
a BioMap object.

Note: Property names are case sensitive.

For a list and description of all properties of a BioRead object, see BioRead class. For a
list and description of all properties of a BioMap object, see BioMap class.

 Manage Short-Read Sequence Data in Objects

2-15

Retrieve a Subset of Information from a BioRead or BioMap Object

Use specialized get methods with a numeric vector, logical vector, or cell array of
headers to retrieve a subset of information from an object. For example, to retrieve the
first 10 elements from a BioRead object, use the getSubset method:

newBRObj = getSubset(BRObj1, [1:10]);

This syntax returns a new BioRead object containing the first 10 elements in the
original BioRead object.

For example, to retrieve the first 12 positions of sequences with headers SRR005164.1,
SRR005164.7, and SRR005164.16, use the getSubsequence method:

subSeqs = getSubsequence(BRObj1, ...

 {'SRR005164.1', 'SRR005164.7', 'SRR005164.16'}, [1:12]')

subSeqs =

 'TGGCTTTAAAGC'

 'CCCGAAAGCTAG'

 'AATTTTGCGGCT'

For example, to retrieve information about the third element in a BioMap object, use the
getInfo method:

Info_3 = getInfo(BMObj1, 3);

This syntax returns a tab-delimited string containing this information for the third
element:

• Sequence header
• SAM flags for the sequence
• Start position of the aligned read sequence with respect to the reference sequence
• Mapping quality score for the sequence
• Signature (CIGAR-formatted string) for the sequence
• Sequence
• Quality scores for sequence positions

Note: Method names are case sensitive.

2 High-Throughput Sequence Analysis

2-16

For a complete list and description of methods of a BioRead object, see BioRead class.
For a complete list and description of methods of a BioMap object, see BioMap class.

Set Information in a BioRead or BioMap Object

Prerequisites

To modify properties (other than Name and Reference) of a BioRead or BioMap object,
the data must be in memory, and not indexed. To ensure the data is in memory, do one of
the following:

• Construct the object from a structure as described in “Construct a BioMap Object
from a SAM or BAM Structure” on page 2-13.

• Construct the object from a source file using the InMemory name-value pair
argument.

Provide Custom Headers for Sequences

First, create an object with the data in memory:

BRObj1 = BioRead('SRR005164_1_50.fastq','InMemory',true);

To provide custom headers for sequences of interest (in this case sequences 1 to 5), do the
following:

BRObj1.Header(1:5) = {'H1', 'H2', 'H3', 'H4', 'H5'};

Alternatively, you can use the setHeader method:

BRObj1 = setHeader(BRObj1, {'H1', 'H2', 'H3', 'H4', 'H5'}, [1:5]);

Several other specialized set methods let you set the properties of a subset of elements
in a BioRead or BioMap object.

Note: Method names are case sensitive.

For a complete list and description of methods of a BioRead object, see BioRead class.
For a complete list and description of methods of a BioMap object, see BioMap class.

 Manage Short-Read Sequence Data in Objects

2-17

Determine Coverage of a Reference Sequence

When working with a BioMap object, you can determine the number of read sequences
that:

• Align within a specific region of the reference sequence
• Align to each position within a specific region of the reference sequence

For example, you can compute the number, indices, and start positions of the read
sequences that align within the first 25 positions of the reference sequence. To do so, use
the getCounts, getIndex, and getStart methods:

Cov = getCounts(BMObj1, 1, 25)

Cov =

 12

Indices = getIndex(BMObj1, 1, 25)

Indices =

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

startPos = getStart(BMObj1, Indices)

startPos =

 1

 3

 5

 6

 9

2 High-Throughput Sequence Analysis

2-18

 13

 13

 15

 18

 22

 22

 24

The first two syntaxes return the number and indices of the read sequences that align
within the specified region of the reference sequence. The last syntax returns a vector
containing the start position of each aligned read sequence, corresponding to the position
numbers of the reference sequence.

For example, you can also compute the number of the read sequences that align to
each of the first 10 positions of the reference sequence. For this computation, use the
getBaseCoverage method:

Cov = getBaseCoverage(BMObj1, 1, 10)

Cov =

 1 1 2 2 3 4 4 4 5 5

Construct Sequence Alignments to a Reference Sequence

It is useful to construct and view the alignment of the read sequences that align to a
specific region of the reference sequence. It is also helpful to know which read sequences
align to this region in a BioMap object.

For example, to retrieve the alignment of read sequences to the first 12 positions of the
reference sequence in a BioMap object, use the getAlignment method:

[Alignment_1_12, Indices] = getAlignment(BMObj2, 1, 12)

Alignment_1_12 =

CACTAGTGGCTC

 CTAGTGGCTC

 AGTGGCTC

 GTGGCTC

 GCTC

 Manage Short-Read Sequence Data in Objects

2-19

Indices =

 1

 2

 3

 4

 5

Return the headers of the read sequences that align to a specific region of the reference
sequence:

alignedHeaders = getHeader(BMObj2, Indices)

alignedHeaders =

 'B7_591:4:96:693:509'

 'EAS54_65:7:152:368:113'

 'EAS51_64:8:5:734:57'

 'B7_591:1:289:587:906'

 'EAS56_59:8:38:671:758'

Filter Read Sequences Using SAM Flags

SAM- and BAM-formatted files include the status of 11 binary flags for each read
sequence. These flags describe different sequencing and alignment aspects of a read
sequence. For more information on the flags, see theSAM Format Specification. The
filterByFlag method lets you filter the read sequences in a BioMap object by using
these flags.

Filter Unmapped Read Sequences

1 Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('ex1.sam');

2 Use the filterByFlag method to create a logical vector indicating the read
sequences in a BioMap object that are mapped.

LogicalVec_mapped = filterByFlag(BMObj2, 'unmappedQuery', false);

3 Use this logical vector and the getSubset method to create a new BioMap object
containing only the mapped read sequences.

filteredBMObj_1 = getSubset(BMObj2, LogicalVec_mapped);

http://samtools.sourceforge.net/SAM1.pdf

2 High-Throughput Sequence Analysis

2-20

Filter Read Sequences That Are Not Mapped in a Pair

1 Construct a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('ex1.sam');

2 Use the filterByFlag method to create a logical vector indicating the read
sequences in a BioMap object that are mapped in a proper pair, that is, both the read
sequence and its mate are mapped to the reference sequence.

LogicalVec_paired = filterByFlag(BMObj2, 'pairedInMap', true);

3 Use this logical vector and the getSubset method to create a new BioMap object
containing only the read sequences that are mapped in a proper pair.

filteredBMObj_2 = getSubset(BMObj2, LogicalVec_paired);

 Store and Manage Feature Annotations in Objects

2-21

Store and Manage Feature Annotations in Objects

In this section...

“Represent Feature Annotations in a GFFAnnotation or GTFAnnotation Object” on page
2-21
“Construct an Annotation Object” on page 2-21
“Retrieve General Information from an Annotation Object” on page 2-22
“Access Data in an Annotation Object” on page 2-23
“Use Feature Annotations with Short-Read Sequence Data” on page 2-24

Represent Feature Annotations in a GFFAnnotation or GTFAnnotation
Object

The GFFAnnotation and GTFAnnotation objects represent a collection of feature
annotations for one or more reference sequences. You construct these objects from GFF
(General Feature Format) and GTF (Gene Transfer Format) files. Each element in the
object represents a single annotation. The properties and methods associated with the
objects let you investigate and filter the data based on reference sequence, a feature
(such as CDS or exon), or a specific gene or transcript.

Construct an Annotation Object

Use the GFFAnnotation constructor function to construct a GFFAnnotation object from
either a GFF- or GTF-formatted file:

GFFAnnotObj = GFFAnnotation('tair8_1.gff')

GFFAnnotObj =

 GFFAnnotation with properties:

 FieldNames: {1x9 cell}

 NumEntries: 3331

Use the GTFAnnotation constructor function to construct a GTFAnnotation object from
a GTF-formatted file:

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf')

2 High-Throughput Sequence Analysis

2-22

GTFAnnotObj =

 GTFAnnotation with properties:

 FieldNames: {1x11 cell}

 NumEntries: 308

Retrieve General Information from an Annotation Object

Determine the field names and the number of entries in an annotation object by
accessing the FieldNames and NumEntries properties. For example, to see the
field names for each annotation object constructed in the previous section, query the
FieldNames property:

GFFAnnotObj.FieldNames

ans =

 Columns 1 through 6

 'Reference' 'Start' 'Stop' 'Feature' 'Source' 'Score'

 Columns 7 through 9

 'Strand' 'Frame' 'Attributes'

GTFAnnotObj.FieldNames

ans =

 Columns 1 through 6

 'Reference' 'Start' 'Stop' 'Feature' 'Gene' 'Transcript'

 Columns 7 through 11

 'Source' 'Score' 'Strand' 'Frame' 'Attributes'

Determine the range of the reference sequences that are covered by feature annotations
by using the getRange method with the annotation object constructed in the previous
section:

range = getRange(GFFAnnotObj)

range =

 Store and Manage Feature Annotations in Objects

2-23

 3631 498516

Access Data in an Annotation Object

Create a Structure of the Annotation Data

Creating a structure of the annotation data lets you access the field values. Use
the getData method to create a structure containing a subset of the data in a
GFFAnnotation object constructed in the previous section.

% Extract annotations for positions 1 through 10000 of the

% reference sequence

AnnotStruct = getData(GFFAnnotObj,1,10000)

AnnotStruct =

60x1 struct array with fields:

 Reference

 Start

 Stop

 Feature

 Source

 Score

 Strand

 Frame

 Attributes

Access Field Values in the Structure

Use dot indexing to access all or specific field values in a structure.

For example, extract the start positions for all annotations:

Starts = AnnotStruct.Start;

Extract the start positions for annotations 12 through 17. Notice that you must use
square brackets when indexing a range of positions:

Starts_12_17 = [AnnotStruct(12:17).Start]

Starts_12_17 =

 4706 5174 5174 5439 5439 5631

2 High-Throughput Sequence Analysis

2-24

Extract the start position and the feature for the 12th annotation:

Start_12 = AnnotStruct(12).Start

Start_12 =

 4706

Feature_12 = AnnotStruct(12).Feature

Feature_12 =

CDS

Use Feature Annotations with Short-Read Sequence Data

Investigate the results of short-read sequence experiments by using GFFAnnotation and
GTFAnnotation objects with BioMap objects. For example, you can:

• Determine counts of short-read sequences aligned to regions of a reference sequence
associated with specific annotations, such as in RNA-Seq workflows.

• Find annotations within a specific range of a peak of interest in a reference sequence,
such as in ChIP-Seq workflows.

Determine Annotations of Interest

1 Construct a GTFAnnotation object from a GTF- formatted file:

GTFAnnotObj = GTFAnnotation('hum37_2_1M.gtf');

2 Use the getReferenceNames method to return the names for the reference
sequences for the annotation object:

refNames = getReferenceNames(GTFAnnotObj)

refNames =

 'chr2'

3 Use the getFeatureNames method to retrieve the feature names from the
annotation object:

featureNames = getFeatureNames(GTFAnnotObj)

featureNames =

 Store and Manage Feature Annotations in Objects

2-25

 'CDS'

 'exon'

 'start_codon'

 'stop_codon'

4 Use the getGeneNames method to retrieve a list of the unique gene names from the
annotation object:

geneNames = getGeneNames(GTFAnnotObj)

geneNames =

 'uc002qvu.2'

 'uc002qvv.2'

 'uc002qvw.2'

 'uc002qvx.2'

 'uc002qvy.2'

 'uc002qvz.2'

 'uc002qwa.2'

 'uc002qwb.2'

 'uc002qwc.1'

 'uc002qwd.2'

 'uc002qwe.3'

 'uc002qwf.2'

 'uc002qwg.2'

 'uc002qwh.2'

 'uc002qwi.3'

 'uc002qwk.2'

 'uc002qwl.2'

 'uc002qwm.1'

 'uc002qwn.1'

 'uc002qwo.1'

 'uc002qwp.2'

 'uc002qwq.2'

 'uc010ewe.2'

 'uc010ewf.1'

 'uc010ewg.2'

 'uc010ewh.1'

 'uc010ewi.2'

 'uc010yim.1'

The previous steps gave us a list of available reference sequences, features, and genes
associated with the available annotations. Use this information to determine annotations
of interest. For instance, you might be interested only in annotations that are exons
associated with the uc002qvv.2 gene on chromosome 2.

2 High-Throughput Sequence Analysis

2-26

Filter Annotations

Use the getData method to filter the annotations and create a structure containing only
the annotations of interest, which are annotations that are exons associated with the
uc002qvv.2 gene on chromosome 2.

AnnotStruct = getData(GTFAnnotObj,'Reference','chr2',...

 'Feature','exon','Gene','uc002qvv.2')

AnnotStruct =

12x1 struct array with fields:

 Reference

 Start

 Stop

 Feature

 Gene

 Transcript

 Source

 Score

 Strand

 Frame

 Attributes

The return structure contains 12 elements, indicating there are 12 annotations that meet
your filter criteria.

Extract Position Ranges for Annotations of Interest

After filtering the data to include only annotations that are exons associated with the
uc002qvv.2 gene on chromosome 2, use the Start and Stop fields to create vectors of the
start and end positions for the ranges associated with the 12 annotations.

StartPos = [AnnotStruct.Start];

EndPos = [AnnotStruct.Stop];

Determine Counts of Short-Read Sequences Aligned to Annotations

Construct a BioMap object from a BAM-formatted file containing short-read sequence
data aligned to chromosome 2.

BMObj3 = BioMap('ex3.bam');

 Store and Manage Feature Annotations in Objects

2-27

Then use the range for the annotations of interest as input to the getCounts method
of a BioMap object. This returns the counts of short reads aligned to the annotations of
interest.

counts = getCounts(BMObj3,StartPos,EndPos,'independent', true)

counts =

 1399

 1

 54

 221

 97

 125

 0

 1

 0

 65

 9

 12

2 High-Throughput Sequence Analysis

2-28

Visualize and Investigate Short-Read Alignments

In this section...

“When to Use the NGS Browser to Visualize and Investigate Data” on page 2-28
“Open the NGS Browser” on page 2-29
“Import Data into the NGS Browser” on page 2-30
“Zoom and Pan to a Specific Region of the Alignment” on page 2-32
“View Coverage of the Reference Sequence” on page 2-33
“View the Pileup View of Short Reads” on page 2-34
“Compare Alignments of Multiple Data Sets” on page 2-35
“View Location, Quality Scores, and Mapping Information” on page 2-36
“Flag Reads” on page 2-36
“Evaluate and Flag Mismatches” on page 2-37
“View Insertions and Deletions” on page 2-38
“View Feature Annotations” on page 2-39
“Print and Export the Browser Image” on page 2-39

When to Use the NGS Browser to Visualize and Investigate Data

The NGS Browser lets you visually verify and investigate the alignment of short-read
sequences to a reference sequence, in support of analyses that measure genetic variations
and gene expression. The NGS Browser lets you:

• Visualize short-read data aligned to a nucleotide reference sequence.
• Compare multiple data sets aligned against a common reference sequence.
• View coverage of different bases and regions of the reference sequence.
• Investigate quality and other details of aligned reads.
• Identify mismatches due to base calling errors or polymorphisms.
• Visualize insertions and deletions.
• Retrieve feature annotations relative to a specific region of the reference sequence.
• Investigate regions of interest in the alignment, determined by various analyses.

 Visualize and Investigate Short-Read Alignments

2-29

You can visualize and investigate the aligned data before, during, or after any
preprocessing (filtering, quality recalibration) or analysis steps you perform on the
aligned data.

Open the NGS Browser

To open the NGS Browser, type the following in the MATLAB Command Window:

ngsbrowser

Alternatively, click the NGS Browser on the Apps tab.

2 High-Throughput Sequence Analysis

2-30

Import Data into the NGS Browser

Browser Displaying Reference Track, One Alignment Track, and One Annotation Track

Import a Reference Sequence

You can import a single reference sequence into the NGS Browser. The reference
sequence must be in a FASTA file.

 Visualize and Investigate Short-Read Alignments

2-31

1 Select File > Add Data from File.
2 In the Open dialog box, select a FASTA file, and then click Open.

Tip You can use the getgenbank function with the ToFile and SequenceOnly name-
value pair arguments to retrieve a reference sequence from the GenBank database and
save it to a FASTA-formatted file.

Import Short-Read Alignment Data

You can import multiple data sets of short-read alignment data. The alignment data
must be in either of the following:

• BioMap object

Tip Construct a BioMap object from a SAM- or BAM-formatted file to investigate,
subset, and filter the data before importing it into the NGS Browser.

• SAM- or BAM-formatted file

Note: Your SAM- or BAM-formatted file must:

• Have reads ordered by start position in the reference sequence.

• Have an IDX index file (for a SAM-formatted file) or BAI and LINEARINDEX
index files (for a BAM-formatted file) stored in the same location as your source
file. Otherwise, the source file must be stored in a location to which you have
write access, because MATLAB needs to create and store index files in this
location.

Tip Try using SAMtools to check if the reads in your SAM- or BAM-formatted file are
ordered by position in the reference sequence, and also to reorder them, if needed.

Tip If you do not have index files (IDX or BAI and LINEARINDEX) stored in the same
location as your source file, and your source file is stored in a location to which you
do not have write access, you cannot import data from the source file directly into the

http://www.ncbi.nlm.nih.gov/Genbank/
http://samtools.sourceforge.net/

2 High-Throughput Sequence Analysis

2-32

browser. Instead, construct a BioMap object from the source file using the IndexDir
name-value pair argument, and then import the BioMap object into the browser.

To import short-read alignment data:

1 Select File > Add Data from File or File > Import Alignment Data from
MATLAB Workspace.

2 Select a SAM-formatted file, BAM-formatted file, or BioMap object.
3 If you select a file containing multiple reference sequences, in the Select Reference

dialog box, select a reference or scan the file for available references and their
mapped reads counts. Click OK.

4 Repeat the previous steps to import additional data sets.

Import Feature Annotations

You can import multiple sets of feature annotations from GFF- or GTF-formatted files
that contain data for a single reference sequence.

1 Select File > Add Data from File.
2 In the Open dialog box, select a GFF- or GTF-formatted file, and then click Open.
3 Repeat the previous steps to import additional annotations.

Zoom and Pan to a Specific Region of the Alignment

To zoom in and out:

Use the toolbar buttons,
or click-drag an edge of the rubberband in the Overview area.

To pan across the alignment:

Use the toolbar buttons,
or click-drag the rubberband in the Overview area.

 Visualize and Investigate Short-Read Alignments

2-33

Tip Use the left and right arrow keys to pan in one base pair (bp) increments.

View Coverage of the Reference Sequence

At the top of each alignment track, the coverage view displays the coverage of each
base in the reference sequence. The vertical ruler on the left edge of the coverage view
indicates the maximum coverage in the display range. Hover the mouse pointer over a
position in the coverage view to display the location and counts.

Note: The browser computes coverage at the base pair resolution, instead of binning,
even when zoomed out.

To change the percent coverage displayed, click anywhere in the alignment track, and
then edit the Alignment Coverage settings.

Tip Set Max to a value greater than 100, if needed, when comparing the coverage of
multiple tracks of reads.

2 High-Throughput Sequence Analysis

2-34

View the Pileup View of Short Reads

Each alignment track includes a pileup view of the short reads aligned to the reference
sequence.

Limit the depth of the reads displayed in the pileup view by setting the Maximum
display read depth in the Alignment Pileup settings.

Tip Limiting the depth of short reads in the pileup view does not change the counts
displayed in the coverage view.

 Visualize and Investigate Short-Read Alignments

2-35

Compare Alignments of Multiple Data Sets

Compare multiple data sets, with each data set in its own track, against a common
reference sequence. Use the Track List to show/hide, order, and delete tracks of data.

2 High-Throughput Sequence Analysis

2-36

View Location, Quality Scores, and Mapping Information

Hover the mouse pointer over a position in a read to display strand direction, location,
quality, and mapping information for the base, the read, and its paired mate.

Flag Reads

Click anywhere in an alignment track to display the Alignment Pileup settings.

 Visualize and Investigate Short-Read Alignments

2-37

Flag Reads with Low Mapping Quality

Set the Mapping quality threshold in the Alignment Pileup section to flag low-quality
reads. Reads with a mapping quality below this level appear in a lighter shade of gray.

Flag Duplicate Reads

Select Flag duplicate reads and select an outline color.

Flag Reads with Unmapped Pairs

Select Flag reads with unmapped pair and select an outline color.

Evaluate and Flag Mismatches

Mismatches display as colored blocks or letters, depending on the zoom level.

Zoomed out view of read — Mismatches display as bars

2 High-Throughput Sequence Analysis

2-38

Zoomed in view of read — Mismatches display as letters

In addition to the base Phred quality information that displays in the tooltip, you can
visualize quality differences by using the Shade mismatch bases by Phred quality
settings.

The mismatch blocks or letters display in:

• Light shade — Mismatch bases with Phred scores below the minimum
• Graduation of medium shades — Mismatch bases with Phred scores within the

minimum to maximum range
• Dark shade — Mismatch bases with Phred scores above the maximum

View Insertions and Deletions

The NGS Browser designates insertions with a symbol. Hover the mouse pointer over
the insertion symbol to display information about it.

The NGS Browser designates deletions with dashes.

 Visualize and Investigate Short-Read Alignments

2-39

View Feature Annotations

After importing a feature annotation file, you can zoom and pan to view feature
annotations associated with a region of interest in the alignment. Hover the mouse
pointer over the feature annotation.

Print and Export the Browser Image

Print or export the browser image by selecting File > Print Image or File > Export
Image.

2 High-Throughput Sequence Analysis

2-40

Identifying Differentially Expressed Genes from RNA-Seq Data

This example shows how to load RNA-seq data and test for differential expression using
a negative binomial model.

Introduction

RNA-seq is an emerging technology for surveying gene expression and transcriptome
content by directly sequencing the mRNA molecules in a sample. RNA-seq can provide
gene expression measurements and is regarded as an attractive approach to analyze a
transcriptome in an unbiased and comprehensive manner.

In this example, you will use Bioinformatics Toolbox™ and Statistics and Machine
Learning Toolbox™ functions to load publicly available transcriptional profiling
sequencing data into MATLAB®, compute the digital gene expression, and then identify
differentially expressed genes in RNA-seq data from hormone treated prostate cancer cell
line samples [1].

The Prostate Cancer Data Set

In the prostate cancer study, the prostate cancer cell line LNCap was treated with
androgen/DHT. Mock-treated and androgen-stimulated LNCap cells were sequenced
using the Illumina® 1G Genome Analyzer [1]. For the mock-treated cells, there were
four lanes totaling ~10 million reads. For the DHT-treated cells, there were three lanes
totaling ~7 million reads. All replicates were technical replicates. Samples labeled s1
through s4 are from mock-treated cells. Samples labeled s5, s6, and s8 are from DHT-
treated cells. The read sequences are stored in FASTA files. The sequence IDs break
down as follows: seq_(unique sequence id)_(number of times this sequence was seen in
this lane).

This example assumes that you have:

(1) Downloaded and uncompressed the seven FASTA files (s1.fa, s2.fa, s3.fa, s4.fa,
s5.fa, s6.fa and s8.fa) containing the raw, 35bp, unmapped short reads from the
author's Web Site.

(2) Produced a SAM-formatted file for each of the seven FASTA files by mapping the
short reads to the NCBI version 37 of the human genome using a mapper such as Bowtie
[2],

(3) Ordered the SAM-formatted files by reference name first, then by genomic position.

http://yeolab.ucsd.edu/yeolab/Papers.html
http://yeolab.ucsd.edu/yeolab/Papers.html

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-41

For the published version of this example, 4,388,997 short reads were mapped using
the Bowtie aligner [2]. The aligner was instructed to report one best valid alignment.
No more than two mismatches were allowed for alignment. Reads with more than one
reportable alignment were suppressed, i.e. any read that mapped to multiple locations
was discarded. The alignment was output to seven SAM files (s1.sam, s2.sam, s3.sam,
s4.sam, s5.sam, s6.sam and s8.sam). Because the input files were FASTA files,
all quality values were assumed to be 40 on the Phred quality scale [2]. We then used
SAMtools [3] to sort the mapped reads in the seven SAM files, one for each replicate.

Creating an Annotation Object of Target Genes

Download from Ensembl a tab-separated-value (TSV) table with all protein encoding
genes to a text file, ensemblmart_genes_hum37.txt. For this example, we are using
Ensembl release 64. Using Ensembl's BioMart service, you can select a table with the
following attributes: chromosome name, gene biotype, gene name, gene start/end, and
strand direction.

Use the provided helper function ensemblmart2gff to convert the downloaded TSV file
to a GFF formatted file. Then use GFFAnnotation to load the file into MATLAB.

GFFfilename = ensemblmart2gff('ensemblmart_genes_hum37.txt');

genes = GFFAnnotation(GFFfilename)

genes =

 GFFAnnotation with properties:

 FieldNames: {1x9 cell}

 NumEntries: 21184

Create a subset with the genes present in chromosomes only (without contigs). The
GFFAnnotation object contais 20012 annotated protein-coding genes in the Ensembl
database.

chrs = {'1','2','3','4','5','6','7','8','9','10','11','12','13','14',...

 '15','16','17','18','19','20','21','22','X','Y','MT'};

genes = getSubset(genes,'reference',chrs)

genes =

http://www.ensembl.org/biomart/martview/

2 High-Throughput Sequence Analysis

2-42

 GFFAnnotation with properties:

 FieldNames: {1x9 cell}

 NumEntries: 20012

Copy the gene information into a structure and display the first entry.

getData(genes,1)

ans =

 Reference: '1'

 Start: 205111632

 Stop: 205180727

 Feature: 'DSTYK'

 Source: 'protein_coding'

 Score: '0.0'

 Strand: '-'

 Frame: '.'

 Attributes: ''

Importing Mapped Short Read Alignment Data

The size of the sorted SAM files in this data set are in the order of 250-360MB. You can
access the mapped reads in s1.sam by creating a BioMap. BioMap has an interface that
provides direct access to the mapped short reads stored in the SAM-formatted file, thus
minimizing the amount of data that is actually loaded into memory.

bm = BioMap('s1.sam')

bm =

 BioMap with properties:

 SequenceDictionary: {1x25 cell}

 Reference: [458367x1 File indexed property]

 Signature: [458367x1 File indexed property]

 Start: [458367x1 File indexed property]

 MappingQuality: [458367x1 File indexed property]

 Flag: [458367x1 File indexed property]

 MatePosition: [458367x1 File indexed property]

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-43

 Quality: [458367x1 File indexed property]

 Sequence: [458367x1 File indexed property]

 Header: [458367x1 File indexed property]

 NSeqs: 458367

 Name: ''

Use the getSummary method to obtain a list of the existing references and the actual
number of short read mapped to each one. Observe that the order of the references is
equivalent to the previously created cell string chrs.

getSummary(bm)

BioMap summary:

 Name: ''

 Container_Type: 'Data is file indexed.'

 Total_Number_of_Sequences: 458367

 Number_of_References_in_Dictionary: 25

 Number_of_Sequences Genomic_Range

 gi|224589800|ref|NC_000001.10| 39037 564571 249213991

 gi|224589811|ref|NC_000002.11| 23102 39107 243177977

 gi|224589815|ref|NC_000003.11| 23788 578280 197769619

 gi|224589816|ref|NC_000004.11| 16273 56044 190988830

 gi|224589817|ref|NC_000005.9| 20875 50342 180698591

 gi|224589818|ref|NC_000006.11| 16743 277774 170892222

 gi|224589819|ref|NC_000007.13| 17022 146474 158834423

 gi|224589820|ref|NC_000008.10| 12199 162668 146284742

 gi|224589821|ref|NC_000009.11| 13988 21790 141067447

 gi|224589801|ref|NC_000010.10| 15707 179281 135500747

 gi|224589802|ref|NC_000011.9| 37506 203411 134375386

 gi|224589803|ref|NC_000012.11| 21714 79745 133785475

 gi|224589804|ref|NC_000013.10| 6078 19335895 115091858

 gi|224589805|ref|NC_000014.8| 14644 19123810 107260517

 gi|224589806|ref|NC_000015.9| 13199 20145084 102501644

 gi|224589807|ref|NC_000016.9| 15423 92212 90143169

 gi|224589808|ref|NC_000017.10| 22089 56680 81014350

 gi|224589809|ref|NC_000018.9| 5986 111538 77957293

 gi|224589810|ref|NC_000019.9| 17690 63006 59093541

 gi|224589812|ref|NC_000020.10| 10026 119233 62906673

 gi|224589813|ref|NC_000021.8| 6119 9421584 48085597

 gi|224589814|ref|NC_000022.10| 7366 16150315 51216589

 gi|224589822|ref|NC_000023.10| 12939 2774622 154563685

 gi|224589823|ref|NC_000024.9| 2819 2711686 59032821

2 High-Throughput Sequence Analysis

2-44

 gi|17981852|ref|NC_001807.4| 66035 12 16570

You can access the alignments, and perform operations like getting counts and coverage
from bm. For more examples of getting read coverage at the chromosome level, see
Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data.

Determining Digital Gene Expression

Next, you will determine the mapped reads associated with each Ensembl gene. Because
the strings used in the SAM files to denote the reference names are different to those
provided in the annotations, we find a vector with the reference index for each gene:

geneReference = seqmatch(genes.Reference,chrs,'exact',true);

For each gene, count the mapped reads that overlap any part of the gene. The read
counts for each gene are the digital gene expression of that gene. Use the getCounts
method of a BioMap to compute the read count within a specified range.

counts = getCounts(bm,genes.Start,genes.Stop,1:genes.NumEntries,geneReference);

Gene expression levels can be best respresented by a table, with each row representing
a gene. Create a table with two columns, set the first column to the gene symbols and
second column to the counts of the first sample.

filenames = {'s1.sam','s2.sam','s3.sam','s4.sam','s5.sam','s6.sam','s8.sam'};

samples = {'Mock_1','Mock_2','Mock_3','Mock_4','DHT_1','DHT_2','DHT_3'};

lncap = table(genes.Feature,counts,'VariableNames',{'Gene',samples{1}});

Display the counts for the first ten genes.

lncap(1:10,:)

ans =

 Gene Mock_1

 ____________ ______

 'DSTYK' 21

 'KCNJ2' 1

 'DPF3' 2

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-45

 'KRT78' 0

 'GPR19' 1

 'SOX9' 8

 'C17orf63' 13

 'AL929472.1' 0

 'INPP5B' 19

 'NME4' 10

Determine the number of genes that have counts greater than or equal to 50 in
chromosome 1.

lichr1 = geneReference == 1; % logical index to genes in chromosome 1

sum(lncap.Mock_1>=50 & lichr1)

ans =

 188

Repeat this step for the other six samples (SAM files) in the data set to get their gene
counts and copy the information to the previously created table.

for i = 2:7

 bm = BioMap(filenames{i});

 counts = getCounts(bm,genes.Start,genes.Stop,1:genes.NumEntries,geneReference);

 lncap.(samples{i}) = counts;

end

Inspect the first 10 rows in the table with the counts for all seven samples.

lncap(1:10, :)

ans =

 Gene Mock_1 Mock_2 Mock_3 Mock_4 DHT_1 DHT_2

 ____________ ______ ______ ______ ______ _____ _____

 'DSTYK' 21 15 15 24 24 24

 'KCNJ2' 1 0 2 0 0 2

 'DPF3' 2 2 2 2 2 1

 'KRT78' 0 0 0 0 0 0

 'GPR19' 1 2 1 1 0 0

2 High-Throughput Sequence Analysis

2-46

 'SOX9' 8 13 19 15 27 22

 'C17orf63' 13 12 16 24 19 12

 'AL929472.1' 0 0 0 1 0 0

 'INPP5B' 19 23 27 24 35 32

 'NME4' 10 11 14 22 11 20

 DHT_3

 15

 2

 1

 0

 0

 11

 9

 0

 9

 8

The table lncap contains counts for samples from two biological conditions: mock-treated
(Aidx) and DHT-treated (Bidx).

Aidx = logical([1 1 1 1 0 0 0]);

Bidx = logical([0 0 0 0 1 1 1]);

You can plot the counts for a chromosome along the chromosome genome coordinate.
For example, plot the counts for chromosome 1 for mock-treated sample Mock_1 and
DHT-treated sample DHT_1. Add the ideogram for chromosome 1 to the plot using the
chromosomeplot function.

ichr1 = find(lichr1); % linear index to genes in chromosome 1

[~,h] = sort(genes.Start(ichr1));

ichr1 = ichr1(h); % linear index to genes in chromosome 1 sorted by

 % genomic position

figure

plot(genes.Start(ichr1), lncap{ichr1,'Mock_1'}, '.-r',...

 genes.Start(ichr1), lncap{ichr1,'DHT_1'}, '.-b');

ylabel('Gene Counts')

title('Gene Counts on Chromosome 1')

fixGenomicPositionLabels(gca) % formats tick labels and adds datacursors

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-47

chromosomeplot('hs_cytoBand.txt', 1, 'AddToPlot', gca)

Inference of Differential Signal in RNA Expression

For RNA-seq experiments, the read counts have been found to be linearly related to
the abundance of the target transcripts [4]. The interest lies in comparing the read
counts between different biological conditions. Current observations suggest that typical
RNA-seq experiments have low background noise, and the gene counts are discrete and
could follow the Poisson distribution. While it has been noted that the assumption of
the Poisson distribution often predicts smaller variation in count data by ignoring the
extra variation due to the actual differences between replicate samples [5]. Anders et.al.,
(2010) proposed an error model for statistical inference of differential signal in RNA-seq
expression data that could address the overdispersion problem [6]. Their approach uses
the negative binomial distribution to model the null distribution of the read counts. The
mean and variance of the negative binomial distribution are linked by local regression,
and these two parameters can be reliably estimated even when the number of replicates
is small [6].

2 High-Throughput Sequence Analysis

2-48

In this example, you will apply this statistical model to process the count data and test
for differential expression. The details of the algorithm can be found in reference [6]. The
model of Anders et.al., (2010) has three sets of parameters that need to be estimated from
the data:

1. Library size parameters;

2. Gene abundance parameters under each experimental condition;

3. The smooth functions that model the dependence of the raw variance on the expected
mean.

Estimating Library Size Factor

The expectation values of all gene counts from a sample are proportional to the sample's
library size. The effective library size can be estimated from the count data.

Compute the geometric mean of the gene counts (rows in lncap) across all samples in
the experiment as a pseudo-reference sample.

pseudo_ref_sample = geomean(lncap{:,samples},2);

Each library size parameter is computed as the median of the ratio of the sample's counts
to those of the pseudo-reference sample.

nzi = pseudo_ref_sample>0; % ignore genes with zero geometric mean

ratios = bsxfun(@rdivide, lncap{nzi,samples}, pseudo_ref_sample(nzi));

sizeFactors = median(ratios, 1);

The counts can be transformed to a common scale using size factor adjustment.

base_lncap = lncap;

base_lncap{:,samples} = bsxfun(@rdivide,lncap{:,samples},sizeFactors);

Use the boxplot function to inspect the count distribution of the mock-treated and DHT-
treated samples and the size factor adjustment.

figure

subplot(2,1,1)

maboxplot(log2(lncap{:,samples}), 'title','Raw Read Counts',...

 'orientation', 'horizontal')

subplot(2,1,2)

maboxplot(log2(base_lncap{:,samples}), 'title','Size Factor Adjusted Read Counts',...

 'orientation', 'horizontal')

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-49

Estimate the gene abundance

To estimate the gene abundance for each experimental condition (mock-treated (A) and
DHT-treated (B)) you use the average of the counts from the samples transformed to the
common scale. (Eq. 6 in [6])

mean_A = mean(base_lncap{:,samples(Aidx)}, 2);

mean_B = mean(base_lncap{:,samples(Bidx)}, 2);

Plot the log2 fold changes against the base means using the mairplot function. A quick
exploration reflects ~15 differentially expressed genes (20 fold change or more), though

2 High-Throughput Sequence Analysis

2-50

not all of these are significant due to the low number of counts compared to the sample
variance.

mairplot(mean_A(nzi),mean_B(nzi),'Labels',lncap.Gene,'Factor',20)

Estimating Negative Binomial Distribution Parameters

In the model, the variances of the counts of a gene are considered as the sum of a
shot noise term and a raw variance term. The shot noise term is the mean counts of

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-51

the gene, while the raw variance can be predicted from the mean, i.e., genes with a
similar expression level have similar variance across the replicates (samples of the same
biological condition). A smooth function that models the dependence of the raw variance
on the mean is obtained by fitting the sample mean and variance within replicates for
each gene using local regression function.

Compute sample variances transformed to the common scale for mock-treated samples.
(Eq. 7 in [6])

var_A = var(base_lncap{:,samples(Aidx)}, 0, 2);

Estimate the shot noise term. (Eq. 8 in [6])

z = mean_A * mean(1./sizeFactors(Aidx));

The helper function estimateNBVarFunc returns an anonymous function that maps the
mean estimate to an unbiased raw variance estimate. Bias adjustment due to shot noise
and multiple replicates is considered in the anonymous function.

raw_var_func_A = estimateNBVarFunc(mean_A,var_A,sizeFactors(Aidx))

raw_var_func_A =

 @(meanEstimate)calculateUnbiasedRawVariance(meanEstimate)

Use the anonymous function raw_var_func_A to calculate the sample variance by
adding the shot noise bias term to the raw variance. (Eq.9 in [6])

var_fit_A = raw_var_func_A(mean_A) + z;

Plot the sample variance to its regressed value to check the fit of the variance function.

figure

loglog(mean_A, var_A, '*')

hold on

loglog(mean_A, var_fit_A, '.r')

ylabel('Base Variances')

xlabel('Base Means')

title('Dependence of the Variance on the Mean for Mock-Treated Samples')

2 High-Throughput Sequence Analysis

2-52

The fit (red line) follows the single-gene estimates well, even though the spread of
the latter is considerable, as one would expect, given that each raw variance value is
estimated from only four values (four mock-treaded replicates).

Empirical Cumulative Distribution Functions

As RNA-seq experiments typically have few replicates, the single-gene estimate of the
base variance can deviate wildly from the fitted value. To see whether this might be
too wild, the cumulative probability for the ratio of single-gene estimate of the base
variance to the fitted value is calculated from the chi-square distribution, as explained in
reference [6].

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-53

Compute the cumulative probabilities of the variance ratios of mock-treated samples.

degrees_of_freedom = sum(Aidx) - 1;

var_ratio = var_A ./ var_fit_A;

pchisq = chi2cdf(degrees_of_freedom * var_ratio, degrees_of_freedom);

Compute the empirical cumulative density functions (ECDF) stratified by base count
levels, and show the ECDFs curves. Group the counts into seven levels.

count_levels = [0 3 12 30 65 130 310];

labels = {'0-3','4-12','13-30','31-65','66-130','131-310','> 311'};

grps = sum(bsxfun(@ge,mean_A,count_levels),2); % stratification

figure;

hold on

cm = jet(7);

for i = 1:7

 [Y1,X1] = ecdf(pchisq(grps==i));

 plot(X1,Y1,'LineWidth',2,'color',cm(i,:))

end

plot([0,1],[0,1] ,'k', 'linewidth', 2)

ax = gca;

ax.Box = 'on';

legend(labels,'Location','NorthWest')

xlabel('Chi-squared probability of residual')

ylabel('ECDF')

title('Residuals ECDF plot for mock-treated samples')

2 High-Throughput Sequence Analysis

2-54

The ECDF curves of count levels greater than 3 and below 130 follows the diagonal well
(black line). If the ECDF curves are below the black line, variance is underestimated.
If the ECDF curves are above the black line, variance is overestimated [6]. For very
low counts (below 3), the deviations become stronger, but at these levels, shot noise
dominates. For the high count cases, the variance is overestimated. The reason might
be there are not enough genes with high counts. Get the number of genes in each of the
count levels.

array2table(accumarray(grps,1),'VariableNames',{'Counts'},'RowNames',labels)

ans =

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-55

 Counts

 0-3 8984

 4-12 3405

 13-30 3481

 31-65 2418

 66-130 1173

 131-310 428

 > 311 123

Increasing the sequence depth, which in turn increases the number of genes with higher
counts, improves the variance estimation.

Testing for Differential Expression

Having estimated and verified the mean-variance dependence, you can test for
differentially expressed genes between the samples from the mock- and DHT- treated
conditions. Define, as test statistic, the total counts in each condition, k_A and k_B:

k_A = sum(lncap{:, samples(Aidx)}, 2);

k_B = sum(lncap{:, samples(Bidx)}, 2);

Parameters of the new negative binomial distributions for count sums k_A can be
calculated by Eqs. 12-14 in [6]:

pooled_mean = mean(lncap{:, samples},2);

mean_k_A = pooled_mean * sum(sizeFactors(Aidx));

var_k_A = mean_k_A + raw_var_func_A(pooled_mean) * sum(sizeFactors(Aidx).^2);

Repeat the same process for k_B:

var_B = var(base_lncap{:,samples(Bidx)}, 0, 2);

raw_var_func_B = estimateNBVarFunc(mean_B,var_B, sizeFactors(Bidx));

mean_k_B = pooled_mean *sum(sizeFactors(Bidx));

var_k_B = mean_k_B + raw_var_func_B(pooled_mean) * sum(sizeFactors(Bidx).^2);

Compute the p-values for the statistical significance of the change from DHT-treated
condition to mock-treated condition. The helper function computePVal implements the
numerical computation of the p-values presented in the reference [6].

res = table(genes.Feature,'VariableNames',{'Gene'});

2 High-Throughput Sequence Analysis

2-56

res.pvals = computePVal(k_B, mean_k_B, var_k_B, k_A, mean_k_A, var_k_A);

You can empirically adjust the p-values from the multiple tests for false discovery rate
(FDR) with the Benjamini-Hochberg procedure [7] using the mafdr function.

res.p_fdr = mafdr(res.pvals, 'BHFDR', true);

Determine the fold change estimated from the DHT-treated to the mock-treated
condition.

fold_change = mean_B ./ mean_A;

Determine the base 2 logarithm of the fold change.

res.log2_fold_change = log2(fold_change);

Plot the log2 fold changes against the base means, and color those genes with p-values.

figure

scatter(log2(pooled_mean), res.log2_fold_change,3,(res.p_fdr).^(.02),'o')

xlabel('log2 Mean')

ylabel('log2 Fold Change')

colormap(flipud(cool(256)))

hc = colorbar;

hc.YTickLabel = num2str((get(hc,'Ytick').^50)','%6.1g');

title('Fold Change colored by False Discovery Rate (FDR)')

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-57

You can identify up- or down- regulated genes for mean base count levels over 3.

up_idx = find(res.p_fdr < 0.01 & res.log2_fold_change >= 2 & pooled_mean > 3);

numel(up_idx)

ans =

 185

down_idx = find(res.p_fdr < 0.01 & res.log2_fold_change <= -2 & pooled_mean > 3);

2 High-Throughput Sequence Analysis

2-58

numel(down_idx)

ans =

 190

This analysis identified 375 statistically significant (out of 20,012 genes) that were
differentially up- or down- regulated by hormone treatment. You can sort table res by
statistical significant and display the top list.

[~,h] = sort(res.p_fdr);

res(h(1:20),:)

ans =

 Gene pvals p_fdr log2_fold_change

 _________ ___________ ___________ ________________

 'FKBP5' 0 0 5.0449

 'NCAPD3' 0 0 5.4914

 'CENPN' 6.6707e-300 4.4498e-296 4.8519

 'LIFR' 2.4939e-284 1.2477e-280 4.0734

 'DHCR24' 2.0847e-249 8.3437e-246 3.1845

 'ERRFI1' 9.2602e-246 3.0886e-242 4.0914

 'GLYATL2' 8.5613e-244 2.4475e-240 3.4522

 'ACSL3' 2.6073e-225 6.5221e-222 3.6953

 'ATF3' 1.2368e-193 2.75e-190 3.368

 'MLPH' 2.0119e-185 4.0263e-182 2.5466

 'STEAP4' 1.7537e-182 3.1905e-179 9.9479

 'DBI' 3.787e-173 6.3155e-170 2.7759

 'ABCC4' 8.5321e-166 1.3134e-162 2.8211

 'KLK2' 2.7911e-163 3.9897e-160 2.9506

 'SAT1' 1.2922e-161 1.724e-158 2.6687

 'CAMK2N1' 8.8046e-161 1.1012e-157 -4.2901

 'JAM3' 4.7333e-151 5.5719e-148 5.7235

 'MBOAT2' 1.556e-140 1.7299e-137 3.285

 'RHOU' 1.4157e-138 1.4911e-135 4.0932

 'NNMT' 5.6484e-138 5.6517e-135 4.3572

 Identifying Differentially Expressed Genes from RNA-Seq Data

2-59

References

[1] Li, H., et al., "Determination of Tag Density Required for Digital Transcriptome
Analysis: Application to an Androgen-Sensitive Prostate Cancer Model", PNAS,
105(51):20179-84, 2008.

[2] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L., "Ultrafast and Memory-
efficient Alignment of Short DNA Sequences to the Human Genome", Genome Biology,
10(3):R25, 2009.

[3] Li, H., et al., "The Sequence Alignment/map (SAM) Format and SAMtools",
Bioinformatics, 25(16):2078-9, 2009.

[4] Mortazavi, A., et al., "Mapping and quantifying mammalian transcriptomes by RNA-
Seq", Nature Methods, 5:621-8, 2008.

[5] Robinson, M.D. and Oshlack, A., "A Scaling Normalization method for differential
Expression Analysis of RNA-seq Data", Genome Biology, 11(3):R25, 2010.

[6] Anders, S. and Huber, W., "Differential Expression Analysis for Sequence Count
Data", Genome Biology, 11(10):R106, 2010.

[7] Benjamini, Y. and Hochberg, Y., "Controlling the false discovery rate: a practical
and powerful approach to multiple testing", Journal of the Royal Statistical Society,
57(1):289-300, 1995.

2 High-Throughput Sequence Analysis

2-60

Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq
Data

This example shows how to perform a genome-wide analysis of a transcription factor in
the Arabidopsis Thaliana (Thale Cress) model organism.

For enhanced performance, it is recommended that you run this example on a 64-bit
platform, because the memory footprint is close to 2 Gb. On a 32-bit platform, if you
receive "Out of memory" errors when running this example, try increasing the virtual
memory (or swap space) of your operating system or try setting the 3GB switch (32-bit
Windows® XP only). These techniques are described in this document.

Introduction

ChIP-Seq is a technology that is used to identify transcription factors that interact
with specific DNA sites. First chromatin immunoprecipitation enriches DNA-protein
complexes using an antibody that binds to a particular protein of interest. Then, all
the resulting fragments are processed using high-throughput sequencing. Sequencing
fragments are mapped back to the reference genome. By inspecting over-represented
regions it is possible to mark the genomic location of DNA-protein interactions.

In this example, short reads are produced by the paired-end Illumina® platform. Each
fragment is reconstructed from two short reads successfully mapped, with this the exact
length of the fragment can be computed. Using paired-end information from sequence
reads maximizes the accuracy of predicting DNA-protein binding sites.

Data Set

This example explores the paired-end ChIP-Seq data generated by Wang et.al. [1]
using the Illumina® platform. The data set has been courteously submitted to the Gene
Expression Omnibus repository with accession number GSM424618. The unmapped
paired-end reads can be obtained from the NCBI FTP site.

This example assumes that you:

(1) downloaded the file SRR054715.sra containing the unmapped short read and
converted it to FASTQ formatted files using the NCBI SRA Toolkit.

(2) produced a SAM formatted file by mapping the short reads to the Thale Cress
reference genome, using a mapper such as BWA [2], Bowtie, or SSAHA2 (which is the
mapper used by authors of [1]), and,

http://www.mathworks.com/support/tech-notes/1100/1107.html
ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX%2FSRX021%2FSRX021610/SRR054715
http://www.ncbi.nlm.nih.gov/books/NBK47540/

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-61

(3) ordered the SAM formatted file by reference name first, then by genomic position.

For the published version of this example, 8,655,859 paired-end short reads are mapped
using the BWA mapper [2]. BWA produced a SAM formatted file (aratha.sam) with
17,311,718 records (8,655,859 x 2). Repetitive hits were randomly chosen, and only one
hit is reported, but with lower mapping quality. The SAM file was ordered and converted
to a BAM formatted file using SAMtools [3] before being loaded into MATLAB.

The last part of the example also assumes that you downloaded the reference genome
for the Thale Cress model organism (which includes five chromosomes). Uncomment the
following lines of code to download the reference from the NCBI repository:

% getgenbank('NC_003070','FileFormat','fasta','tofile','ach1.fasta');

% getgenbank('NC_003071','FileFormat','fasta','tofile','ach2.fasta');

% getgenbank('NC_003074','FileFormat','fasta','tofile','ach3.fasta');

% getgenbank('NC_003075','FileFormat','fasta','tofile','ach4.fasta');

% getgenbank('NC_003076','FileFormat','fasta','tofile','ach5.fasta');

Creating a MATLAB® Interface to a BAM Formatted File

To create local alignments and look at the coverage we need to construct a BioMap.
BioMap has an interface that provides direct access to the mapped short reads stored
in the BAM formatted file, thus minimizing the amount of data that is actually loaded
to the workspace. Create a BioMap to access all the short reads mapped in the BAM
formatted file.

bm = BioMap('aratha.bam')

bm =

 BioMap

 Properties:

 SequenceDictionary: {5x1 cell}

 Reference: [14637324x1 File indexed property]

 Signature: [14637324x1 File indexed property]

 Start: [14637324x1 File indexed property]

 MappingQuality: [14637324x1 File indexed property]

 Flag: [14637324x1 File indexed property]

 MatePosition: [14637324x1 File indexed property]

 Quality: [14637324x1 File indexed property]

 Sequence: [14637324x1 File indexed property]

2 High-Throughput Sequence Analysis

2-62

 Header: [14637324x1 File indexed property]

 NSeqs: 14637324

 Name: ''

Use the getSummary method to obtain a list of the existing references and the actual
number of short read mapped to each one.

getSummary(bm)

BioMap summary:

 Name: ''

 Container_Type: 'Data is file indexed.'

 Total_Number_of_Sequences: 14637324

 Number_of_References_in_Dictionary: 5

 Number_of_Sequences Genomic_Range

 Chr1 3151847 1 30427671

 Chr2 3080417 1000 19698292

 Chr3 3062917 94 23459782

 Chr4 2218868 1029 18585050

 Chr5 3123275 11 26975502

The remainder of this example focuses on the analysis of one of the five chromosomes,
Chr1. Create a new BioMap to access the short reads mapped to the first chromosome by
subsetting the first one.

bm1 = getSubset(bm,'SelectReference','Chr1')

bm1 =

 BioMap

 Properties:

 SequenceDictionary: {'Chr1'}

 Reference: [3151847x1 File indexed property]

 Signature: [3151847x1 File indexed property]

 Start: [3151847x1 File indexed property]

 MappingQuality: [3151847x1 File indexed property]

 Flag: [3151847x1 File indexed property]

 MatePosition: [3151847x1 File indexed property]

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-63

 Quality: [3151847x1 File indexed property]

 Sequence: [3151847x1 File indexed property]

 Header: [3151847x1 File indexed property]

 NSeqs: 3151847

 Name: ''

By accessing the Start and Stop positions of the mapped short read you can obtain the
genomic range.

x1 = min(getStart(bm1))

x2 = max(getStop(bm1))

x1 =

 1

x2 =

 30427671

Exploring the Coverage at Different Resolutions

To explore the coverage for the whole range of the chromosome, a binning algorithm is
required. The getBaseCoverage method produces a coverage signal based on effective
alignments. It also allows you to specify a bin width to control the size (or resolution) of
the output signal. However internal computations are still performed at the base pair
(bp) resolution. This means that despite setting a large bin size, narrow peaks in the
coverage signal can still be observed. Once the coverage signal is plotted you can program
the figure's data cursor to display the genomic position when using the tooltip. You can
zoom and pan the figure to determine the position and height of the ChIP-Seq peaks.

[cov,bin] = getBaseCoverage(bm1,x1,x2,'binWidth',1000,'binType','max');

figure

plot(bin,cov)

axis([x1,x2,0,100]) % sets the axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

xlabel('Base position')

ylabel('Depth')

title('Coverage in Chromosome 1')

2 High-Throughput Sequence Analysis

2-64

It is also possible to explore the coverage signal at the bp resolution (also referred to
as the pile-up profile). Explore one of the large peaks observed in the data at position
4598837.

p1 = 4598837-1000;

p2 = 4598837+1000;

figure

plot(p1:p2,getBaseCoverage(bm1,p1,p2))

xlim([p1,p2]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

xlabel('Base position')

ylabel('Depth')

title('Coverage in Chromosome 1')

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-65

Identifying and Filtering Regions with Artifacts

Observe the large peak with coverage depth of 800+ between positions 4599029 and
4599145. Investigate how these reads are aligning to the reference chromosome. You
can retrieve a subset of these reads enough to satisfy a coverage depth of 25, since this
is sufficient to understand what is happening in this region. Use getIndex to obtain
indices to this subset. Then use getCompactAlignment to display the corresponding
multiple alignment of the short-reads.

i = getIndex(bm1,4599029,4599145,'depth',25);

bmx = getSubset(bm1,i,'inmemory',false)

getCompactAlignment(bmx,4599029,4599145)

bmx =

 BioMap

 Properties:

 SequenceDictionary: {'Chr1'}

 Reference: [62x1 File indexed property]

 Signature: [62x1 File indexed property]

 Start: [62x1 File indexed property]

2 High-Throughput Sequence Analysis

2-66

 MappingQuality: [62x1 File indexed property]

 Flag: [62x1 File indexed property]

 MatePosition: [62x1 File indexed property]

 Quality: [62x1 File indexed property]

 Sequence: [62x1 File indexed property]

 Header: [62x1 File indexed property]

 NSeqs: 62

 Name: ''

ans =

AGTT AATCAAATAGAAAGCCCCGAGGGCGCCATATCCTAGGCGC AAACTATGTGATTGAATAAATCCTCCTCTATCTGTTGCGG GAGGACTCCTTCTCCTTCCCCTTTTGG

AGTGC TCAAATAGAAAGCCCCGAGGGCGCCATATTCTAGGAGCCC GAATAAATCCTCCTCTATCTGTTGCGGGTCGAGGACTCCT CTCCTGCCCCTTTTGG

AGTTCAA CCCGAGGGCGCCATATTCTAGGAGCCCAAACTATGTGATT TATCTGTTGCGGGTCGAGGACTCCTTCTCCTTCCCCTTCT

AGTTCAATCAAATAGAAAGC TTCTAGGAGCCCAAACTATGTGATTGAATAAATCCTCCTC AGGACTCCTTCTCCTTCCCCTTTTGG

AGTT AAGGAGCCCAAAATATGTGATTGAATAAATCCACCTCTAT GGACTCCTTCTCCTTCCCCTTTTGG

AGTACAATCAAATAGAAAGCCCCGAGGGCGCCATA TAGGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTAT CCTTCACCTTCCCCTTTTGG

CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCT TTCCCCTTTTGG

CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCT

CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAGCTATGTGATTGAATAAATCCTCCTCTATCT

CGTACAATCAAATAGAAAGCCCCGAGGGCGCCATATTC GGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCT

AGTTCAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCTTCCTCTATCTG

GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

GATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTA GAGCCCAAATTATGTGATTGAATAAATCCTCCTCTATCTG

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG CCCAAACTATGTGATTGAATAAATCCTCCTCTATCTGTTG

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG CACAAACTATGTGATTGAATAAATCCTCCTCTATCTGTTG

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG CCAAACTATGTGATTGAATAAATCCTCCTCTATCTGTTGC

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTCG

 ATACAATCAAATAGAAAGCCCCGGGGGCGCCATATTCTAG

 ATTGAGTCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG

 ATACAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAG

 CAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAGGAG

 CAATCAAATAGAAAGCCCCGAGGGCGCCATATTCTAGGAG

 TAGGAGCCCAAACTATGTGATTGAATAAATCCTCCTCTAT

 TAGGAGCCCAAACTATGCCATTGAATAAATCCTCCGCTAT

 GGAGCCCAAGCTATGTGATTGAATAAATCCTCCTCTATCT

 GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-67

 GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

 GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

 GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

 GAGCCCAAACTATGTGATTGAATAAATCCTCCTCTATCTG

In addition to visually confirming the alignment, you can also explore the mapping
quality for all the short reads in this region, as this may hint to a potential problem. In
this case, less than one percent of the short reads have a Phred quality of 60, indicating
that the mapper most likely found multiple hits within the reference genome, hence
assigning a lower mapping quality.

figure

i = getIndex(bm1,4599029,4599145);

hist(double(getMappingQuality(bm1,i)))

title('Mapping Quality of the reads between 4599029 and 4599145')

xlabel('Phred Quality Score')

ylabel('Number of Reads')

2 High-Throughput Sequence Analysis

2-68

Most of the large peaks in this data set occur due to satellite repeat regions or due to
its closeness to the centromere [4], and show characteristics similar to the example just
explored. You may explore other regions with large peaks using the same procedure.

To prevent these problematic regions, two techniques are used. First, given that the
provided data set uses paired-end sequencing, by removing the reads that are not aligned
in a proper pair reduces the number of potential aligner errors or ambiguities. You can
achieve this by exploring the flag field of the SAM formatted file, in which the second
less significant bit is used to indicate if the short read is mapped in a proper pair.

i = find(bitget(getFlag(bm1),2));

bm1_filtered = getSubset(bm1,i)

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-69

bm1_filtered =

 BioMap

 Properties:

 SequenceDictionary: {'Chr1'}

 Reference: [3040724x1 File indexed property]

 Signature: [3040724x1 File indexed property]

 Start: [3040724x1 File indexed property]

 MappingQuality: [3040724x1 File indexed property]

 Flag: [3040724x1 File indexed property]

 MatePosition: [3040724x1 File indexed property]

 Quality: [3040724x1 File indexed property]

 Sequence: [3040724x1 File indexed property]

 Header: [3040724x1 File indexed property]

 NSeqs: 3040724

 Name: ''

Second, consider only uniquely mapped reads. You can detect reads that are equally
mapped to different regions of the reference sequence by looking at the mapping quality,
because BWA assigns a lower mapping quality (less than 60) to this type of short read.

i = find(getMappingQuality(bm1_filtered)==60);

bm1_filtered = getSubset(bm1_filtered,i)

bm1_filtered =

 BioMap

 Properties:

 SequenceDictionary: {'Chr1'}

 Reference: [2313252x1 File indexed property]

 Signature: [2313252x1 File indexed property]

 Start: [2313252x1 File indexed property]

 MappingQuality: [2313252x1 File indexed property]

 Flag: [2313252x1 File indexed property]

 MatePosition: [2313252x1 File indexed property]

 Quality: [2313252x1 File indexed property]

 Sequence: [2313252x1 File indexed property]

 Header: [2313252x1 File indexed property]

 NSeqs: 2313252

 Name: ''

2 High-Throughput Sequence Analysis

2-70

Visualize again the filtered data set using both, a coarse resolution with 1000 bp bins for
the whole chromosome, and a fine resolution for a small region of 20,000 bp. Most of the
large peaks due to artifacts have been removed.

[cov,bin] = getBaseCoverage(bm1_filtered,x1,x2,'binWidth',1000,'binType','max');

figure

plot(bin,cov)

axis([x1,x2,0,100]) % sets the axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

xlabel('Base Position')

ylabel('Depth')

title('Coverage in Chromosome 1 after Filtering')

p1 = 24275801-10000;

p2 = 24275801+10000;

figure

plot(p1:p2,getBaseCoverage(bm1_filtered,p1,p2))

xlim([p1,p2]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

xlabel('Base Position')

ylabel('Depth')

title('Coverage in Chromosome 1 after Filtering')

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-71

2 High-Throughput Sequence Analysis

2-72

Recovering Sequencing Fragments from the Paired-End Reads

In Wang's paper [1] it is hypothesized that paired-end sequencing data has the potential
to increase the accuracy of the identification of chromosome binding sites of DNA
associated proteins because the fragment length can be derived accurately, while when
using single-end sequencing it is necessary to resort to a statistical approximation of the
fragment length, and use it indistinctly for all putative binding sites.

Use the paired-end reads to reconstruct the sequencing fragments. First, get the indices
for the forward and the reverse reads in each pair. This information is captured in the
fifth bit of the flag field, according to the SAM file format.

fow_idx = find(~bitget(getFlag(bm1_filtered),5));

rev_idx = find(bitget(getFlag(bm1_filtered),5));

SAM-formatted files use the same header strings to identify pair mates. By pairing the
header strings you can determine how the short reads in BioMap are paired. To pair the
header strings, simply order them in ascending order and use the sorting indices (hf and
hr) to link the unsorted header strings.

[~,hf] = sort(getHeader(bm1_filtered,fow_idx));

[~,hr] = sort(getHeader(bm1_filtered,rev_idx));

mate_idx = zeros(numel(fow_idx),1);

mate_idx(hf) = rev_idx(hr);

Use the resulting fow_idx and mate_idx variables to retrieve pair mates. For example,
retrieve the paired-end reads for the first 10 fragments.

for j = 1:10

 disp(getInfo(bm1_filtered, fow_idx(j)))

 disp(getInfo(bm1_filtered, mate_idx(j)))

end

SRR054715.sra.6849385 163 20 60 40M AACCCTAAACCTCTGAATCCTTAATCCCTAAATCCCTAAA BBBBBBBBBBCBCB?2?BBBBB@7;BBC?7=7?BCC4*)3

SRR054715.sra.6849385 83 229 60 40M CCTATTTCTTGTGGTTTTCTTTCCTTCACTTAGCTATGGA 06BBBB=BBBBBBBBBBBBBBA6@@@9<*9BBA@>BBBBB

SRR054715.sra.6992346 99 20 60 40M AACCCTAAACCTCTGAATCCTTAATCCCTAAATCCCTAAA =B?BCB=2;BBBBB=B8BBCCBBBBBBBC66BBB=BC8BB

SRR054715.sra.6992346 147 239 60 40M GTGGTTTTCTTTCCTTCACTTAGCTATGGATGGTTTATCT BBCBB6B?B0B8B<'.BBBBBBBB=BBBBB6BBBBB;*6@

SRR054715.sra.8438570 163 47 60 40M CTAAATCCCTAAATCTTTAAATCCTACATCCATGAATCCC BC=BBBBCBB?==BBB;BB;?BBB8BCB??B-BB<*<B;B

SRR054715.sra.8438570 83 274 60 40M TATCTTCATTTGTTATATTGGATACAAGCTTTGCTACGAT BBBBB=;BBBBBBBBB;6?=BBBBBBBB<*9BBB;8BBB?

SRR054715.sra.1676744 163 67 60 40M ATCCTACATCCATGAATCCCTAAATACCTAATCCCCTAAA BBCB>4?+<BB6BB66BBC?77BBCBC@4ABB-BBBCCBB

SRR054715.sra.1676744 83 283 60 40M TTGTTATATTGGATACAAGCTTTGCTACGATCTACATTTG CCB6BBB93<BBBB>>@B?<<?BBBBBBBBBBBBBBBBBB

SRR054715.sra.6820328 163 73 60 40M CATCCATGAATCCCTAAATACCTAATTCCCTAAACCCGAA BB=08?BB?BCBBB=8BBB8?CCB-B;BBB?;;?BB8B;8

SRR054715.sra.6820328 83 267 60 40M GTTGGTGTATCTTCATTTGTTATATTGGATACGAGCTTTG BBBBB646;BB8@44BB=BBBB?C8BBBB=B6.9B8CCCB

SRR054715.sra.1559757 163 103 60 40M TAAACCCGAAACCGGTTTCTCTGGTTGAAACTCATTGTGT BBBBBCBBBBBBBBBBBCBBBB?BBBB<;?*?BBBBB7,*

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-73

SRR054715.sra.1559757 83 311 60 40M GATCTACATTTGGGAATGTGAGTCTCTTATTGTAACCTTA <?BBBBB?7=BBBBBBBBBBBBBB@;@>@BBBBBBBBBBB

SRR054715.sra.5658991 163 103 60 40M CAAACCCGAAACCGGTTTCTCTGGTTGAAACTCATTGTGT 7?BBBBBB;=BBBB?8B;B-;BCB-B<49<6B8-BB?+?B

SRR054715.sra.5658991 83 311 60 40M GATCTACATTTGGGAATGTGAGTCTCTTATTGTAACCTTA 3,<-BBCBBBBBB?=BBBBA<ABBBBBBBBB?79BBB?BB

SRR054715.sra.4625439 163 143 60 40M ATATAATGATAATTTTAGCGTTTTTATGCAATTGCTTATT BBBBB@,*<8BBB++2B6B;+6B8B;8+9BB0,'9B=.=B

SRR054715.sra.4625439 83 347 60 40M CTTAGTGTTGGTTTATCTCAAGAATCTTATTAATTGTTTG +BB8B0BBB?BBBB-BBBB22?BBB-BB6BB-BBBBBB?B

SRR054715.sra.1007474 163 210 60 40M ATTTGAGGTCAATACAAATCCTATTTCTTGTGGTTTGCTT BBBBBBBB;.>BB6B6',BBBCBB-08BBBBB;CB9630<

SRR054715.sra.1007474 83 408 60 40M TATTGTCATTCTTACTCCTTTGTGGAAATGTTTGTTCTAT BBB@AABBBCCCBBBBBBB=BBBCB8BBBBB=B6BCBB77

SRR054715.sra.7345693 99 213 60 40M TGAGGTCAATACAAATCCTATTTCTTGTGGTTTTCTTTCT B>;>BBB9,<6?@@BBBBBBBBBBBBBB7<9BBBBBB6*'

SRR054715.sra.7345693 147 393 60 40M TTATTTTTGGACATTTATTGTCATTCTTACTCCTTTGGGG BB-?+?C@>9BBBBBB6.<BBB-BBB94;A4442+49';B

Use the paired-end indices to construct a new BioMap with the minimal information
needed to represent the sequencing fragments. First, calculate the insert sizes.

J = getStop(bm1_filtered, fow_idx);

K = getStart(bm1_filtered, mate_idx);

L = K - J - 1;

Obtain the new signature (or CIGAR string) for each fragment by using the short read
original signatures separated by the appropriate number of skip CIGAR symbols (N).

n = numel(L);

cigars = cell(n,1);

for i = 1:n

 cigars{i} = sprintf('%dN' ,L(i));

end

cigars = strcat(getSignature(bm1_filtered, fow_idx),...

 cigars,...

 getSignature(bm1_filtered, mate_idx));

Reconstruct the sequences for the fragments by concatenating the respective sequences of
the paired-end short reads.

seqs = strcat(getSequence(bm1_filtered, fow_idx),...

 getSequence(bm1_filtered, mate_idx));

Calculate and plot the fragment size distribution.

J = getStart(bm1_filtered,fow_idx);

K = getStop(bm1_filtered,mate_idx);

L = K - J + 1;

figure

hist(double(L),100)

title(sprintf('Fragment Size Distribution\n %d Paired-end Fragments Mapped to Chromosome 1',n))

xlabel('Fragment Size')

ylabel('Count')

2 High-Throughput Sequence Analysis

2-74

Construct a new BioMap to represent the sequencing fragments. With this, you will be
able explore the coverage signals as well as local alignments of the fragments.

bm1_fragments = BioMap('Sequence',seqs,'Signature',cigars,'Start',J)

bm1_fragments =

 BioMap

 Properties:

 SequenceDictionary: {0x1 cell}

 Reference: {0x1 cell}

 Signature: {1156626x1 cell}

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-75

 Start: [1156626x1 uint32]

 MappingQuality: [0x1 uint8]

 Flag: [0x1 uint16]

 MatePosition: [0x1 uint32]

 Quality: {0x1 cell}

 Sequence: {1156626x1 cell}

 Header: {0x1 cell}

 NSeqs: 1156626

 Name: ''

Exploring the Coverage Using Fragment Alignments

Compare the coverage signal obtained by using the reconstructed fragments with the
coverage signal obtained by using individual paired-end reads. Notice that enriched
binding sites, represented by peaks, can be better discriminated from the background
signal.

cov_reads = getBaseCoverage(bm1_filtered,x1,x2,'binWidth',1000,'binType','max');

[cov_fragments,bin] = getBaseCoverage(bm1_fragments,x1,x2,'binWidth',1000,'binType','max');

figure

plot(bin,cov_reads,bin,cov_fragments)

xlim([x1,x2]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

xlabel('Base position')

ylabel('Depth')

title('Coverage Comparison')

legend('Short Reads','Fragments')

2 High-Throughput Sequence Analysis

2-76

Perform the same comparison at the bp resolution. In this dataset, Wang et.al. [1]
investigated a basic helix-loop-helix (bHLH) transcription factor. bHLH proteins typically
bind to a consensus sequence called an E-box (with a CANNTG motif). Use fastaread to
load the reference chromosome, search for the E-box motif in the 3' and 5' directions, and
then overlay the motif positions on the coverage signals. This example works over the
region 1-200,000, however the figure limits are narrowed to a 3000 bp region in order to
better depict the details.

p1 = 1;

p2 = 200000;

cov_reads = getBaseCoverage(bm1_filtered,p1,p2);

[cov_fragments,bin] = getBaseCoverage(bm1_fragments,p1,p2);

chr1 = fastaread('ach1.fasta');

mp1 = regexp(chr1.Sequence(p1:p2),'CA..TG')+3+p1;

mp2 = regexp(chr1.Sequence(p1:p2),'GT..AC')+3+p1;

motifs = [mp1 mp2];

figure

plot(bin,cov_reads,bin,cov_fragments)

hold on

plot([1;1;1]*motifs,[0;max(ylim);NaN],'r')

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-77

xlim([111000 114000]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

xlabel('Base position')

ylabel('Depth')

title('Coverage Comparison')

legend('Short Reads','Fragments','E-box motif')

Observe that it is not possible to associate each peak in the coverage signals with an
E-box motif. This is because the length of the sequencing fragments is comparable to
the average motif distance, blurring peaks that are close. Plot the distribution of the
distances between the E-box motif sites.

motif_sep = diff(sort(motifs));

figure

hist(motif_sep(motif_sep<500),50)

title('Distance (bp) between adjacent E-box motifs')

xlabel('Distance (bp)')

ylabel('Counts')

2 High-Throughput Sequence Analysis

2-78

Finding Significant Peaks in the Coverage Signal

Use the function mspeaks to perform peak detection with Wavelets denoising on the
coverage signal of the fragment alignments. Filter putative ChIP peaks using a height
filter to remove peaks that are not enriched by the binding process under consideration.

putative_peaks = mspeaks(bin,cov_fragments,'noiseestimator',20,...

 'heightfilter',10,'showplot',true);

hold on

plot([1;1;1]*motifs(motifs>p1 & motifs<p2),[0;max(ylim);NaN],'r')

xlim([111000 114000]) % sets the x-axis limits

fixGenomicPositionLabels % formats tick labels and adds datacursors

legend('Coverage from Fragments','Wavelet Denoised Coverage','Putative ChIP peaks','E-box Motifs')

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-79

xlabel('Base position')

ylabel('Depth')

title('ChIP-Seq Peak Detection')

Use the knnsearch function to find the closest motif to each one of the putative peaks.
As expected, most of the enriched ChIP peaks are close to an E-box motif [1]. This
reinforces the importance of performing peak detection at the finest resolution possible
(bp resolution) when the expected density of binding sites is high, as it is in the case of
the E-box motif. This example also illustrates that for this type of analysis, paired-end
sequencing should be considered over single-end sequencing [1].

h = knnsearch(motifs',putative_peaks(:,1));

distance = putative_peaks(:,1)-motifs(h(:))';

figure

hist(distance(abs(distance)<200),50)

title('Distance to Closest E-box Motif for Each Detected Peak')

xlabel('Distance (bp)')

ylabel('Counts')

2 High-Throughput Sequence Analysis

2-80

References

[1] Wang C., Xu J., Zhang D., Wilson Z.A. and Zhang D., "An effective approach for
identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data", BMC
Bioinformatics, 11:81, 2010.

[2] Li H. and Durbin R., "Fast and accurate short read alignment with Burrows-Wheeler
transform", Bioinformatics, 25(14):1754-60, 2009.

[3] Li, H., et al., "The Sequence Alignment/map (SAM) Format and SAMtools",
Bioinformatics, 25(16):2078-9, 2009.

[4] Jothi R., et al., "Genome-wide identification of in vivo protein-DNA binding sites from
ChIP-Seq data", Nucleic Acids Research, 36(16):5221-31, 2008.

 Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data

2-81

[5] Hoofman B.G. and Jones S.J.M., "Genome-wide identification of DNA-protein
interactions using chromatin immunoprecipitation coupled with flow cell sequencing",
Journal of Endocrinology, 201(1):1-13, 2009.

[6] Ramsey S.A., et al., "Genome-wide histone acetylation data improve prediction of
mammalian transcription factor binding sites", Bioinformatics, 26(17):2071-5, 2010.

2 High-Throughput Sequence Analysis

2-82

Exploring Genome-wide Differences in DNA Methylation Profiles

This example shows how to perform a genome-wide analysis of DNA methylation in the
human by using genome sequencing.

Note: For enhanced performance, MathWorks recommends that you run this example on
a 64-bit platform, because the memory footprint is close to 2 GB. On a 32-bit platform,
if you receive "Out of memory" errors when running this example, try increasing the
virtual memory (or swap space) of your operating system or try setting the 3GB switch
(32-bit Windows® XP only). These techniques are described in this document.

Introduction

DNA methylation is an epigenetic modification that modulates gene expression and the
maintenance of genomic organization in normal and disease processes. DNA methylation
can define different states of the cell, and it is inheritable during cell replication.
Aberrant DNA methylation patterns have been associated with cancer and tumor
suppressor genes.

In this example you will explore the DNA methylation profiles of two human cancer cells:
parental HCT116 colon cancer cells and DICERex5 cells. DICERex5 cells are derived
from HCT116 cells after the truncation of the DICER1 alleles. Serre et al. in [1] proposed
to study DNA methylation profiles by using the MBD2 protein as a methyl CpG binding
domain and subsequently used high-throughput sequencing (HTseq). This technique is
commonly know as MBD-Seq. Short reads for two replicates of the two samples have
been submitted to NCBI's SRA archive by the authors of [1]. There are other technologies
available to interrogate DNA methylation status of CpG sites in combination with
HTseq, for example MeDIP-seq or the use of restriction enzymes. You can also analyze
this type of data sets following the approach presented in this example.

Data Sets

You can obtain the unmapped single-end reads for four sequencing experiments from
the NCBI FTP site. Short reads were produced using Illumina®'s Genome Analyzer II.
Average insert size is 120 bp, and the length of short reads is 36 bp.

This example assumes that you:

(1) downloaded the files SRR030222.sra, SRR030223.sra, SRR030224.sra and
SRR030225.sra containing the unmapped short reads for two replicates of from the

http://www.mathworks.com/support/tech-notes/1100/1107.html
http://www.ncbi.nlm.nih.gov/sra/
ftp://ftp-trace.ncbi.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/SRP001/SRP001414/

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-83

DICERex5 sample and two replicates from the HCT116 sample respectively. Converted
them to FASTQ-formatted files using the NCBI SRA Toolkit.

(2) produced SAM-formatted files by mapping the short reads to the reference human
genome (NCBI Build 37.5) using the Bowtie [2] algorithm. Only uniquely mapped reads
are reported.

(3) compressed the SAM formatted files to BAM and ordered them by reference name
first, then by genomic position by using SAMtools [3].

This example also assumes that you downloaded the reference human genome
(GRCh37.p5). You can use the bowtie-inspect command to reconstruct the human
reference directly from the bowtie indices. Or you may download the reference from the
NCBI repository by uncommenting the following line:

% getgenbank('NC_000009','FileFormat','fasta','tofile','hsch9.fasta');

Creating a MATLAB® Interface to the BAM-Formatted Files

To explore the signal coverage of the HCT116 samples you need to construct a BioMap.
BioMap has an interface that provides direct access to the mapped short reads stored
in the BAM-formatted file, thus minimizing the amount of data that is actually loaded
into memory. Use the function baminfo to obtain a list of the existing references and the
actual number of short reads mapped to each one.

info = baminfo('SRR030224.bam','ScanDictionary',true);

fprintf('%-35s%s\n','Reference','Number of Reads');

for i = 1:numel(info.ScannedDictionary)

 fprintf('%-35s%d\n',info.ScannedDictionary{i},...

 info.ScannedDictionaryCount(i));

end

Reference Number of Reads

gi|224589800|ref|NC_000001.10| 205065

gi|224589811|ref|NC_000002.11| 187019

gi|224589815|ref|NC_000003.11| 73986

gi|224589816|ref|NC_000004.11| 84033

gi|224589817|ref|NC_000005.9| 96898

gi|224589818|ref|NC_000006.11| 87990

gi|224589819|ref|NC_000007.13| 120816

gi|224589820|ref|NC_000008.10| 111229

gi|224589821|ref|NC_000009.11| 106189

gi|224589801|ref|NC_000010.10| 112279

http://www.ncbi.nlm.nih.gov/books/NBK47540/

2 High-Throughput Sequence Analysis

2-84

gi|224589802|ref|NC_000011.9| 104466

gi|224589803|ref|NC_000012.11| 87091

gi|224589804|ref|NC_000013.10| 53638

gi|224589805|ref|NC_000014.8| 64049

gi|224589806|ref|NC_000015.9| 60183

gi|224589807|ref|NC_000016.9| 146868

gi|224589808|ref|NC_000017.10| 195893

gi|224589809|ref|NC_000018.9| 60344

gi|224589810|ref|NC_000019.9| 166420

gi|224589812|ref|NC_000020.10| 148950

gi|224589813|ref|NC_000021.8| 310048

gi|224589814|ref|NC_000022.10| 76037

gi|224589822|ref|NC_000023.10| 32421

gi|224589823|ref|NC_000024.9| 18870

gi|17981852|ref|NC_001807.4| 1015

Unmapped 6805842

In this example you will focus on the analysis of chromosome 9. Create a BioMap for the
two HCT116 sample replicates.

bm_hct116_1 = BioMap('SRR030224.bam','SelectRef','gi|224589821|ref|NC_000009.11|')

bm_hct116_2 = BioMap('SRR030225.bam','SelectRef','gi|224589821|ref|NC_000009.11|')

bm_hct116_1 =

 BioMap with properties:

 SequenceDictionary: 'gi|224589821|ref|NC_000009.11|'

 Reference: [106189x1 File indexed property]

 Signature: [106189x1 File indexed property]

 Start: [106189x1 File indexed property]

 MappingQuality: [106189x1 File indexed property]

 Flag: [106189x1 File indexed property]

 MatePosition: [106189x1 File indexed property]

 Quality: [106189x1 File indexed property]

 Sequence: [106189x1 File indexed property]

 Header: [106189x1 File indexed property]

 NSeqs: 106189

 Name: ''

bm_hct116_2 =

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-85

 BioMap with properties:

 SequenceDictionary: 'gi|224589821|ref|NC_000009.11|'

 Reference: [107586x1 File indexed property]

 Signature: [107586x1 File indexed property]

 Start: [107586x1 File indexed property]

 MappingQuality: [107586x1 File indexed property]

 Flag: [107586x1 File indexed property]

 MatePosition: [107586x1 File indexed property]

 Quality: [107586x1 File indexed property]

 Sequence: [107586x1 File indexed property]

 Header: [107586x1 File indexed property]

 NSeqs: 107586

 Name: ''

Using a binning algorithm provided by the getBaseCoverage method, you can plot the
coverage of both replicates for an initial inspection. For reference, you can also add the
ideogram for the human chromosome 9 to the plot using the chromosomeplot function.

figure

ha = gca;

hold on

n = 141213431; % length of chromosome 9

[cov,bin] = getBaseCoverage(bm_hct116_1,1,n,'binWidth',100);

h1 = plot(bin,cov,'b'); % plots the binned coverage of bm_hct116_1

[cov,bin] = getBaseCoverage(bm_hct116_2,1,n,'binWidth',100);

h2 = plot(bin,cov,'g'); % plots the binned coverage of bm_hct116_2

chromosomeplot('hs_cytoBand.txt', 9, 'AddToPlot', ha) % plots an ideogram along the x-axis

axis(ha,[1 n 0 100]) % zooms-in the y-axis

fixGenomicPositionLabels(ha) % formats tick labels and adds datacursors

legend([h1 h2],'HCT116-1','HCT116-2','Location','NorthEast')

ylabel('Coverage')

title('Coverage for two replicates of the HCT116 sample')

fig = gcf;

fig.Position = max(fig.Position,[0 0 900 0]); % resize window

2 High-Throughput Sequence Analysis

2-86

Because short reads represent the methylated regions of the DNA, there is a correlation
between aligned coverage and DNA methylation. Observe the increased DNA
methylation close to the chromosome telomeres; it is known that there is an association
between DNA methylation and the role of telomeres for maintaining the integrity of
the chromosomes. In the coverage plot you can also see a long gap over the chromosome
centromere. This is due to the repetitive sequences present in the centromere, which
prevent us from aligning short reads to a unique position in this region. For the data sets
used in this example, only about 30% of the short reads were uniquely mapped to the
reference genome.

Correlating CpG Islands and DNA Methylation

DNA methylation normally occurs in CpG dinucleotides. Alteration of the DNA
methylation patterns can lead to transcriptional silencing, especially in the gene
promoter CpG islands. But, it is also known that DNA methylation can block CTCF
binding and can silence miRNA transcription among other relevant functions. In general,
it is expected that mapped reads should preferably align to CpG rich regions.

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-87

Load the human chromosome 9 from the reference file hs37.fasta. For this example, it
is assumed that you recovered the reference from the Bowtie indices using the bowtie-
inspect command; therefore hs37.fasta contains all the human chromosomes. To
load only the chromosome 9 you can use the option nave-value pair BLOCKREAD with the
fastaread function.

chr9 = fastaread('hs37.fasta','blockread',9)

chr9 =

 Header: 'gi|224589821|ref|NC_000009.11| Homo sapiens chromosome 9, G...'

 Sequence: 'NNN...'

Use the cpgisland function to find the CpG clusters. Using the standard definition for
CpG islands [4], 200 or more bp islands with 60% or greater CpGobserved/CpGexpected
ratio, leads to 1682 GpG islands found in chromosome 9.

cpgi = cpgisland(chr9.Sequence)

cpgi =

 Starts: [1x1682 double]

 Stops: [1x1682 double]

Use the getCounts method to calculate the ratio of aligned bases that are inside CpG
islands. For the first replicate of the sample HCT116, the ratio is close to 45%.

aligned_bases_in_CpG_islands = getCounts(bm_hct116_1,cpgi.Starts,cpgi.Stops,'method','sum')

aligned_bases_total = getCounts(bm_hct116_1,1,n,'method','sum')

ratio = aligned_bases_in_CpG_islands ./ aligned_bases_total

aligned_bases_in_CpG_islands =

 1724363

aligned_bases_total =

 3822804

2 High-Throughput Sequence Analysis

2-88

ratio =

 0.4511

You can explore high resolution coverage plots of the two sample replicates and observe
how the signal correlates with the CpG islands. For example, explore the region between
23,820,000 and 23,830,000 bp. This is the 5' region of the human gene ELAVL2.

r1 = 23820001; % set the region limits

r2 = 23830000;

fhELAVL2 = figure; % keep the figure handle to use it later

hold on

% plot high-resolution coverage of bm_hct116_1

h1 = plot(r1:r2,getBaseCoverage(bm_hct116_1,r1,r2,'binWidth',1),'b');

% plot high-resolution coverage of bm_hct116_2

h2 = plot(r1:r2,getBaseCoverage(bm_hct116_2,r1,r2,'binWidth',1),'g');

% mark the CpG islands within the [r1 r2] region

for i = 1:numel(cpgi.Starts)

 if cpgi.Starts(i)>r1 && cpgi.Stops(i)<r2 % is CpG island inside [r1 r2]?

 px = [cpgi.Starts([i i]) cpgi.Stops([i i])]; % x-coordinates for patch

 py = [0 max(ylim) max(ylim) 0]; % y-coordinates for patch

 hp = patch(px,py,'r','FaceAlpha',.1,'EdgeColor','r','Tag','cpgi');

 end

end

axis([r1 r2 0 20]) % zooms-in the y-axis

fixGenomicPositionLabels(gca) % formats tick labels and adds datacursors

legend([h1 h2 hp],'HCT116-1','HCT116-2','CpG Islands')

ylabel('Coverage')

xlabel('Chromosome 9 position')

title('Coverage for two replicates of the HCT116 sample')

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-89

Statistical Modelling of Count Data

To find regions that contain more mapped reads than would be expected by chance, you
can follow a similar approach to the one described by Serre et al. [1]. The number of
counts for non-overlapping contiguous 100 bp windows is statistically modeled.

First, use the getCounts method to count the number of mapped reads that start at
each window. In this example you use a binning approach that considers only the start
position of every mapped read, following the approach of Serre et al. However, you may
also use the OVERLAP and METHOD name-value pairs in getCounts to compute more
accurate statistics. For instance, to obtain the maximum coverage for each window
considering base pair resolution, set OVERLAP to 1 and METHOD to MAX.

n = numel(chr9.Sequence); % length of chromosome

w = 1:100:n; % windows of 100 bp

counts_1 = getCounts(bm_hct116_1,w,w+99,'independent',true,'overlap','start');

counts_2 = getCounts(bm_hct116_2,w,w+99,'independent',true,'overlap','start');

2 High-Throughput Sequence Analysis

2-90

First, try to model the counts assuming that all the windows with counts are biologically
significant and therefore from the same distribution. Use the negative bionomial
distribution to fit a model the count data.

nbp = nbinfit(counts_1);

Plot the fitted model over a histogram of the empirical data.

figure

hold on

emphist = histc(counts_1,0:100); % calculate the empirical distribution

bar(0:100,emphist./sum(emphist),'c','grouped') % plot histogram

plot(0:100,nbinpdf(0:100,nbp(1),nbp(2)),'b','linewidth',2); % plot fitted model

axis([0 50 0 .001])

legend('Empirical Distribution','Negative Binomial Fit')

ylabel('Frequency')

xlabel('Counts')

title('Frequency of counts for 100 bp windows (HCT116-1)')

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-91

The poor fitting indicates that the observed distribution may be due to the mixture of two
models, one that represents the background and one that represents the count data in
methylated DNA windows.

A more realistic scenario would be to assume that windows with a small number of
mapped reads are mainly the background (or null model). Serre et al. assumed that
100-bp windows contaning four or more reads are unlikely to be generated by chance.
To estimate a good approximation to the null model, you can fit the left body of the
emprirical distribution to a truncated negative binomial distribution. To fit a truncated
distribution use the mle function. First you need to define an anonymous function that
defines the right-truncated version of nbinpdf.

2 High-Throughput Sequence Analysis

2-92

rtnbinpdf = @(x,p1,p2,t) nbinpdf(x,p1,p2) ./ nbincdf(t-1,p1,p2);

Define the fitting function using another anonymous function.

rtnbinfit = @(x,t) mle(x,'pdf',@(x,p1,p2) rtnbinpdf(x,p1,p2,t),'start',nbinfit(x),'lower',[0 0]);

Before fitting the real data, let us assess the fiting procedure with some sampled data
from a known distribution.

nbp = [0.5 0.2]; % Known coefficients

x = nbinrnd(nbp(1),nbp(2),10000,1); % Random sample

trun = 6; % Set a truncation threshold

nbphat1 = nbinfit(x); % Fit non-truncated model to all data

nbphat2 = nbinfit(x(x<trun)); % Fit non-truncated model to truncated data (wrong)

nbphat3 = rtnbinfit(x(x<trun),trun); % Fit truncated model to truncated data

figure

hold on

emphist = histc(x,0:100); % Calculate the empirical distribution

bar(0:100,emphist./sum(emphist),'c','grouped') % plot histogram

h1 = plot(0:100,nbinpdf(0:100,nbphat1(1),nbphat1(2)),'b-o','linewidth',2);

h2 = plot(0:100,nbinpdf(0:100,nbphat2(1),nbphat2(2)),'r','linewidth',2);

h3 = plot(0:100,nbinpdf(0:100,nbphat3(1),nbphat3(2)),'g','linewidth',2);

axis([0 25 0 .2])

legend([h1 h2 h3],'Neg-binomial fitted to all data',...

 'Neg-binomial fitted to truncated data',...

 'Truncated neg-binomial fitted to truncated data')

ylabel('Frequency')

xlabel('Counts')

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-93

Identifying Significant Methylated Regions

For the two replicates of the HCT116 sample, fit a right-truncated negative binomial
distribution to the observed null model using the rtnbinfit anonymous function
previously defined.

trun = 4; % Set a truncation threshold (as in [1])

pn1 = rtnbinfit(counts_1(counts_1<trun),trun); % Fit to HCT116-1 counts

pn2 = rtnbinfit(counts_2(counts_2<trun),trun); % Fit to HCT116-2 counts

Calculate the p-value for each window to the null distribution.

2 High-Throughput Sequence Analysis

2-94

pval1 = 1 - nbincdf(counts_1,pn1(1),pn1(2));

pval2 = 1 - nbincdf(counts_2,pn2(1),pn2(2));

Calculate the false discovery rate using the mafdr function. Use the name-value pair
BHFDR to use the linear-step up (LSU) procedure ([6]) to calculate the FDR adjusted
p-values. Setting the FDR < 0.01 permits you to identify the 100-bp windows that are
significantly methylated.

fdr1 = mafdr(pval1,'bhfdr',true);

fdr2 = mafdr(pval2,'bhfdr',true);

w1 = fdr1<.01; % logical vector indicating significant windows in HCT116-1

w2 = fdr2<.01; % logical vector indicating significant windows in HCT116-2

w12 = w1 & w2; % logical vector indicating significant windows in both replicates

Number_of_sig_windows_HCT116_1 = sum(w1)

Number_of_sig_windows_HCT116_2 = sum(w2)

Number_of_sig_windows_HCT116 = sum(w12)

Number_of_sig_windows_HCT116_1 =

 1662

Number_of_sig_windows_HCT116_2 =

 1674

Number_of_sig_windows_HCT116 =

 1346

Overall, you identified 1662 and 1674 non-overlapping 100-bp windows in the two
replicates of the HCT116 samples, which indicates there is significant evidence of DNA
methylation. There are 1346 windows that are significant in both replicates.

For example, looking again in the promoter region of the ELAVL2 human gene you can
observe that in both sample replicates, multiple 100-bp windows have been marked
significant.

figure(fhELAVL2) % bring back to focus the previously plotted figure

plot(w(w1)+50,counts_1(w1),'bs') % plot significant windows in HCT116-1

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-95

plot(w(w2)+50,counts_2(w2),'gs') % plot significant windows in HCT116-2

axis([r1 r2 0 100])

title('Significant 100-bp windows in both replicates of the HCT116 sample')

Finding Genes With Significant Methylated Promoter Regions

DNA methylation is involved in the modulation of gene expression. For instance, it
is well known that hypermethylation is associated with the inactivation of several
tumor suppresor genes. You can study in this data set the methylation of gene promoter
regions.

First, download from Ensembl a tab-separated-value (TSV) table with all protein
encoding genes to a text file, ensemblmart_genes_hum37.txt. For this example, we
are using Ensamble release 64. Using Ensembl's BioMart service, you can select a table
with the following attributes: chromosome name, gene biotype, gene name, gene start/
end, and strand direction.

Use the provided helper function ensemblmart2gff to convert the downloaded TSV file
to a GFF formatted file. Then use GFFAnnotation to load the file into MATLAB and

http://www.ensembl.org/biomart/martview/

2 High-Throughput Sequence Analysis

2-96

create a subset with the genes present in chromosome 9 only. This results 800 annotated
protein-coding genes in the Ensembl database.

GFFfilename = ensemblmart2gff('ensemblmart_genes_hum37.txt');

a = GFFAnnotation(GFFfilename)

a9 = getSubset(a,'reference','9')

numGenes = a9.NumEntries

a =

 GFFAnnotation with properties:

 FieldNames: {1x9 cell}

 NumEntries: 21184

a9 =

 GFFAnnotation with properties:

 FieldNames: {1x9 cell}

 NumEntries: 800

numGenes =

 800

Find the promoter regions for each gene. In this example we consider the proximal
promoter as the -500/100 upstream region.

downstream = 500;

upstream = 100;

geneDir = strcmp(a9.Strand,'+'); % logical vector indicating strands in the forward direction

% calculate promoter's start position for genes in the forward direction

promoterStart(geneDir) = a9.Start(geneDir) - downstream;

% calculate promoter's end position for genes in the forward direction

promoterStop(geneDir) = a9.Start(geneDir) + upstream;

% calculate promoter's start position for genes in the reverse direction

promoterStart(~geneDir) = a9.Stop(~geneDir) - upstream;

% calculate promoter's end position for genes in the reverse direction

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-97

promoterStop(~geneDir) = a9.Stop(~geneDir) + downstream;

Use a dataset as a container for the promoter information, as we can later add new
columns to store gene counts and p-values.

promoters = dataset({a9.Feature,'Gene'});

promoters.Strand = char(a9.Strand);

promoters.Start = promoterStart';

promoters.Stop = promoterStop';

Find genes with significant DNA methylation in the promoter region by looking at the
number of mapped short reads that overlap at least one base pair in the defined promoter
region.

promoters.Counts_1 = getCounts(bm_hct116_1,promoters.Start,promoters.Stop,...

 'overlap',1,'independent',true);

promoters.Counts_2 = getCounts(bm_hct116_2,promoters.Start,promoters.Stop,...

 'overlap',1,'independent',true);

Fit a null distribution for each sample replicate and compute the p-values:

trun = 5; % Set a truncation threshold

pn1 = rtnbinfit(promoters.Counts_1(promoters.Counts_1<trun),trun); % Fit to HCT116-1 promoter counts

pn2 = rtnbinfit(promoters.Counts_2(promoters.Counts_2<trun),trun); % Fit to HCT116-2 promoter counts

promoters.pval_1 = 1 - nbincdf(promoters.Counts_1,pn1(1),pn1(2)); % p-value for every promoter in HCT116-1

promoters.pval_2 = 1 - nbincdf(promoters.Counts_2,pn2(1),pn2(2)); % p-value for every promoter in HCT116-2

Number_of_sig_promoters = sum(promoters.pval_1<.01 & promoters.pval_2<.01)

Ratio_of_sig_methylated_promoters = Number_of_sig_promoters./numGenes

Number_of_sig_promoters =

 74

Ratio_of_sig_methylated_promoters =

 0.0925

Observe that only 74 (out of 800) genes in chromosome 9 have significantly DNA
methylated regions (pval<0.01 in both replicates). Display a report of the 30 genes with
the most significant methylated promoter regions.

2 High-Throughput Sequence Analysis

2-98

[~,order] = sort(promoters.pval_1.*promoters.pval_2);

promoters(order(1:30),[1 2 3 4 5 7 6 8])

ans =

 Gene Strand Start Stop Counts_1

 'DMRT3' + 976464 977064 223

 'CNTFR' - 34590021 34590621 219

 'GABBR2' - 101471379 101471979 404

 'CACNA1B' + 140771741 140772341 454

 'BARX1' - 96717554 96718154 264

 'FAM78A' - 134151834 134152434 497

 'FOXB2' + 79634071 79634671 163

 'TLE4' + 82186188 82186788 157

 'ASTN2' - 120177248 120177848 141

 'FOXE1' + 100615036 100615636 149

 'MPDZ' - 13279489 13280089 129

 'PTPRD' - 10612623 10613223 145

 'PALM2-AKAP2' + 112542089 112542689 134

 'FAM69B' + 139606522 139607122 112

 'WNK2' + 95946698 95947298 108

 'IGFBPL1' - 38424344 38424944 110

 'AKAP2' + 112542269 112542869 107

 'C9orf4' - 111929471 111930071 102

 'COL5A1' + 137533120 137533720 84

 'LHX3' - 139096855 139097455 74

 'OLFM1' + 137966768 137967368 75

 'NPR2' + 35791651 35792251 68

 'DBC1' - 122131645 122132245 61

 'SOHLH1' - 138591274 138591874 56

 'PIP5K1B' + 71320075 71320675 59

 'PRDM12' + 133539481 133540081 53

 'ELAVL2' - 23826235 23826835 50

 'ZFP37' - 115818939 115819539 59

 'RP11-35N6.1' + 103790491 103791091 60

 'DMRT2' + 1049854 1050454 54

 pval_1 Counts_2 pval_2

 6.6613e-16 253 6.6613e-16

 6.6613e-16 226 6.6613e-16

 6.6613e-16 400 6.6613e-16

 6.6613e-16 408 6.6613e-16

 6.6613e-16 286 6.6613e-16

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-99

 6.6613e-16 499 6.6613e-16

 1.4e-13 165 6.0363e-13

 3.5649e-13 151 4.7348e-12

 4.3566e-12 163 8.098e-13

 1.2447e-12 133 6.7598e-11

 2.8679e-11 148 7.3683e-12

 2.3279e-12 127 1.6448e-10

 1.3068e-11 135 5.0276e-11

 4.1911e-10 144 1.3295e-11

 7.897e-10 125 2.2131e-10

 5.7523e-10 114 1.1364e-09

 9.2538e-10 106 3.7513e-09

 2.0467e-09 96 1.6795e-08

 3.6266e-08 97 1.4452e-08

 1.8171e-07 91 3.5644e-08

 1.5457e-07 69 1.0074e-06

 4.8093e-07 73 5.4629e-07

 1.5082e-06 62 2.9575e-06

 3.4322e-06 67 1.3692e-06

 2.0943e-06 63 2.5345e-06

 5.6364e-06 61 3.4518e-06

 9.2778e-06 62 2.9575e-06

 2.0943e-06 47 3.0746e-05

 1.7771e-06 42 6.8037e-05

 4.7762e-06 46 3.6016e-05

Finding Intergenic Regions that are Significantly Methylated

Serre et al. [1] reported that, in these data sets, approximately 90% of the uniquely
mapped reads fall outside the 5' gene promoter regions. Using a similar approach as
before, you can find genes that have intergenic methylated regions. To compensate for
the varying lengths of the genes, you can use the maximum coverage, computed base-by-
base, instead of the raw number of mapped short reads. Another alternative approach to
normalize the counts by the gene length is to set the METHOD name-value pair to rpkm in
the getCounts function.

intergenic = dataset({a9.Feature,'Gene'});

intergenic.Strand = char(a9.Strand);

intergenic.Start = a9.Start;

intergenic.Stop = a9.Stop;

intergenic.Counts_1 = getCounts(bm_hct116_1,intergenic.Start,intergenic.Stop,...

 'overlap','full','method','max','independent',true);

2 High-Throughput Sequence Analysis

2-100

intergenic.Counts_2 = getCounts(bm_hct116_2,intergenic.Start,intergenic.Stop,...

 'overlap','full','method','max','independent',true);

trun = 10; % Set a truncation threshold

pn1 = rtnbinfit(intergenic.Counts_1(intergenic.Counts_1<trun),trun); % Fit to HCT116-1 intergenic counts

pn2 = rtnbinfit(intergenic.Counts_2(intergenic.Counts_2<trun),trun); % Fit to HCT116-2 intergenic counts

intergenic.pval_1 = 1 - nbincdf(intergenic.Counts_1,pn1(1),pn1(2)); % p-value for every intergenic region in HCT116-1

intergenic.pval_2 = 1 - nbincdf(intergenic.Counts_2,pn2(1),pn2(2)); % p-value for every intergenic region in HCT116-2

Number_of_sig_genes = sum(intergenic.pval_1<.01 & intergenic.pval_2<.01)

Ratio_of_sig_methylated_genes = Number_of_sig_genes./numGenes

[~,order] = sort(intergenic.pval_1.*intergenic.pval_2);

intergenic(order(1:30),[1 2 3 4 5 7 6 8])

Number_of_sig_genes =

 62

Ratio_of_sig_methylated_genes =

 0.0775

ans =

 Gene Strand Start Stop Counts_1

 'AL772363.1' - 140762377 140787022 106

 'CACNA1B' + 140772241 141019076 106

 'SUSD1' - 114803065 114937688 88

 'C9orf172' + 139738867 139741797 99

 'NR5A1' - 127243516 127269709 86

 'BARX1' - 96713628 96717654 77

 'KCNT1' + 138594031 138684992 58

 'GABBR2' - 101050391 101471479 65

 'FOXB2' + 79634571 79635869 51

 'NDOR1' + 140100119 140113813 54

 'KIAA1045' + 34957484 34984679 50

 'ADAMTSL2' + 136397286 136440641 55

 'PAX5' - 36833272 37034476 48

 'OLFM1' + 137967268 138013025 55

 'PBX3' + 128508551 128729656 45

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-101

 'FOXE1' + 100615536 100618986 49

 'MPDZ' - 13105703 13279589 51

 'ASTN2' - 119187504 120177348 43

 'ARRDC1' + 140500106 140509812 49

 'IGFBPL1' - 38408991 38424444 45

 'LHX3' - 139088096 139096955 44

 'PAPPA' + 118916083 119164601 44

 'CNTFR' - 34551430 34590121 41

 'DMRT3' + 976964 991731 40

 'TUSC1' - 25676396 25678856 46

 'ELAVL2' - 23690102 23826335 35

 'SMARCA2' + 2015342 2193624 36

 'GAS1' - 89559279 89562104 34

 'GRIN1' + 140032842 140063207 36

 'TLE4' + 82186688 82341658 36

 pval_1 Counts_2 pval_2

 8.3267e-15 98 1.8097e-14

 8.3267e-15 98 1.8097e-14

 2.2901e-12 112 1.1102e-16

 7.4385e-14 96 3.5083e-14

 4.2677e-12 90 2.5391e-13

 7.0112e-11 62 2.5691e-09

 2.5424e-08 73 6.9018e-11

 2.9078e-09 58 9.5469e-09

 2.2131e-07 58 9.5469e-09

 8.7601e-08 55 2.5525e-08

 3.0134e-07 55 2.5525e-08

 6.4307e-08 45 6.7163e-07

 5.585e-07 49 1.8188e-07

 6.4307e-08 42 1.7861e-06

 1.4079e-06 51 9.4566e-08

 4.1027e-07 46 4.8461e-07

 2.2131e-07 42 1.7861e-06

 2.6058e-06 43 1.2894e-06

 4.1027e-07 36 1.2564e-05

 1.4079e-06 39 4.7417e-06

 1.9155e-06 36 1.2564e-05

 1.9155e-06 35 1.7377e-05

 4.8199e-06 37 9.0816e-06

 6.5537e-06 37 9.0816e-06

 1.0346e-06 31 6.3417e-05

 3.0371e-05 41 2.4736e-06

2 High-Throughput Sequence Analysis

2-102

 2.2358e-05 40 3.4251e-06

 4.1245e-05 41 2.4736e-06

 2.2358e-05 38 6.5629e-06

 2.2358e-05 37 9.0816e-06

For instance, explore the methylation profile of the BARX1 gene, the sixth significant
gene with intergenic methylation in the previous list. The GTF formatted file
ensemblmart_barx1.gtf contains structural information for this gene obtained from
Ensembl using the BioMart service.

Use GTFAnnotation to load the structural information into MATLAB. There are two
annotated transcripts for this gene.

barx1 = GTFAnnotation('ensemblmart_barx1.gtf')

transcripts = getTranscriptNames(barx1)

barx1 =

 GTFAnnotation with properties:

 FieldNames: {1x11 cell}

 NumEntries: 18

transcripts =

 'ENST00000253968'

 'ENST00000401724'

Plot the DNA methylation profile for both HCT116 sample replicates with base-pair
resolution. Overlay the CpG islands and plot the exons for each of the two transcripts
along the bottom of the plot.

range = barx1.getRange;

r1 = range(1)-1000; % set the region limits

r2 = range(2)+1000;

figure

hold on

% plot high-resolution coverage of bm_hct116_1

h1 = plot(r1:r2,getBaseCoverage(bm_hct116_1,r1,r2,'binWidth',1),'b');

% plot high-resolution coverage of bm_hct116_2

h2 = plot(r1:r2,getBaseCoverage(bm_hct116_2,r1,r2,'binWidth',1),'g');

http://www.ensembl.org/biomart/martview/

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-103

% mark the CpG islands within the [r1 r2] region

for i = 1:numel(cpgi.Starts)

 if cpgi.Starts(i)>r1 && cpgi.Stops(i)<r2 % is CpG island inside [r1 r2]?

 px = [cpgi.Starts([i i]) cpgi.Stops([i i])]; % x-coordinates for patch

 py = [0 max(ylim) max(ylim) 0]; % y-coordinates for patch

 hp = patch(px,py,'r','FaceAlpha',.1,'EdgeColor','r','Tag','cpgi');

 end

end

% mark the exons at the bottom of the axes

for i = 1:numel(transcripts)

 exons = getSubset(barx1,'Transcript',transcripts{i},'Feature','exon');

 for j = 1:exons.NumEntries

 px = [exons.Start([j j]);exons.Stop([j j])]'; % x-coordinates for patch

 py = [0 1 1 0]-i*2-1; % y-coordinates for patch

 hq = patch(px,py,'b','FaceAlpha',.1,'EdgeColor','b','Tag','exon');

 end

end

axis([r1 r2 -numel(transcripts)*2-2 80]) % zooms-in the y-axis

fixGenomicPositionLabels(gca) % formats tick labels and adds datacursors

ylabel('Coverage')

xlabel('Chromosome 9 position')

title('High resolution coverage in the BARX1 gene')

legend([h1 h2 hp hq],'HCT116-1','HCT116-2','CpG Islands','Exons','Location','NorthWest')

2 High-Throughput Sequence Analysis

2-104

Observe the highly methylated region in the 5' promoter region (right-most CpG island).
Recall that for this gene trasciption occurs in the reverse strand. More interesting,
observe the highly methylated regions that overlap the initiation of each of the two
annotated transcripts (two middle CpG islands).

Differential Analysis of Methylation Patterns

In the study by Serre et al. another cell line is also analyzed. New cells (DICERex5) are
derived from the same HCT116 colon cancer cells after truncating the DICER1 alleles. It
has been reported in literature [5] that there is a localized change of DNA methylation
at small number of gene promoters. In this example, you be find significant 100-bp
windows in two sample replicates of the DICERex5 cells following the same approach as
the parental HCT116 cells, and then you will search statistically significant differences
between the two cell lines.

The helper function getWindowCounts captures the similar steps to find windows with
significant coverage as before. getWindowCounts returns vectors with counts, p-values,
and false discovery rates for each new replicate.

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-105

bm_dicer_1 = BioMap('SRR030222.bam','SelectRef','gi|224589821|ref|NC_000009.11|');

bm_dicer_2 = BioMap('SRR030223.bam','SelectRef','gi|224589821|ref|NC_000009.11|');

[counts_3,pval3,fdr3] = getWindowCounts(bm_dicer_1,4,w,100);

[counts_4,pval4,fdr4] = getWindowCounts(bm_dicer_2,4,w,100);

w3 = fdr3<.01; % logical vector indicating significant windows in DICERex5_1

w4 = fdr4<.01; % logical vector indicating significant windows in DICERex5-2

w34 = w3 & w4; % logical vector indicating significant windows in both replicates

Number_of_sig_windows_DICERex5_1 = sum(w3)

Number_of_sig_windows_DICERex5_2 = sum(w4)

Number_of_sig_windows_DICERex5 = sum(w34)

Number_of_sig_windows_DICERex5_1 =

 908

Number_of_sig_windows_DICERex5_2 =

 1041

Number_of_sig_windows_DICERex5 =

 759

To perform a differential analysis you use the 100-bp windows that are significant in at
least one of the samples (either HCT116 or DICERex5).

wd = w34 | w12; % logical vector indicating windows included in the diff. analysis

counts = [counts_1(wd) counts_2(wd) counts_3(wd) counts_4(wd)];

ws = w(wd); % window start for each row in counts

Use the function manorm to normalize the data. The PERCENTILE name-value pair
lets you filter out windows with very large number of counts while normalizing, since
these windows are mainly due to artifacts, such as repetitive regions in the reference
chromosome.

counts_norm = round(manorm(counts,'percentile',90).*100);

Use the function mattest to perform a two-sample t-test to identify differentially
covered windows from the two different cell lines.

2 High-Throughput Sequence Analysis

2-106

pval = mattest(counts_norm(:,[1 2]),counts_norm(:,[3 4]),'bootstrap',true,...

 'showhist',true,'showplot',true);

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-107

Create a report with the 25 most significant differentially covered windows. While
creating the report use the helper function findClosestGene to determine if the
window is intergenic, intragenic, or if it is in a proximal promoter region.

[~,ord] = sort(pval);

fprintf('Window Pos Type p-value HCT116 DICERex5\n\n');

for i = 1:25

 j = ord(i);

 [~,msg] = findClosestGene(a9,[ws(j) ws(j)+99]);

 fprintf('%10d %-25s %7.6f%5d%5d %5d%5d\n', ...

 ws(j),msg,pval(j),counts_norm(j,:));

end

2 High-Throughput Sequence Analysis

2-108

Window Pos Type p-value HCT116 DICERex5

 140311701 Intergenic (EXD3) 0.000026 13 13 104 105

 139546501 Intragenic 0.001826 21 21 91 93

 10901 Intragenic 0.002671 258 257 434 428

 120176801 Intergenic (ASTN2) 0.002730 266 270 155 155

 139914801 Intergenic (ABCA2) 0.002980 64 63 26 25

 126128501 Intergenic (CRB2) 0.003193 94 93 129 130

 71939501 Prox. Promoter (FAM189A2) 0.005550 107 101 0 0

 124461001 Intergenic (DAB2IP) 0.005624 77 76 39 37

 140086501 Intergenic (TPRN) 0.006520 47 42 123 124

 79637201 Intragenic 0.007512 52 51 32 31

 136470801 Intragenic 0.007512 52 51 32 31

 140918001 Intergenic (CACNA1B) 0.008115 176 169 71 68

 100615901 Intergenic (FOXE1) 0.008346 262 253 123 118

 98221901 Intergenic (PTCH1) 0.009935 26 30 104 99

 138730601 Intergenic (CAMSAP1) 0.010276 26 21 97 93

 89561701 Intergenic (GAS1) 0.010351 77 76 6 12

 977401 Intergenic (DMRT3) 0.010394 236 245 129 124

 37002601 Intergenic (PAX5) 0.010560 133 127 207 211

 139744401 Intergenic (PHPT1) 0.010874 47 46 32 31

 126771301 Intragenic 0.011483 43 46 97 93

 93922501 Intragenic 0.011524 34 34 149 161

 94187101 Intragenic 0.011554 73 80 6 6

 136044401 Intragenic 0.011623 39 34 110 105

 139611201 Intergenic (FAM69B) 0.011623 39 34 110 105

 139716201 Intergenic (C9orf86) 0.011831 73 72 136 130

Plot the DNA methylation profile for the promoter region of gene FAM189A2, the most
signicant differentially covered promoter region from the previous list. Overlay the CpG
islands and the FAM189A2 gene.

range = getRange(getSubset(a9,'Feature','FAM189A2'));

r1 = range(1)-1000;

r2 = range(2)+1000;

figure

hold on

% plot high-resolution coverage of all replicates

h1 = plot(r1:r2,getBaseCoverage(bm_hct116_1,r1,r2,'binWidth',1),'b');

h2 = plot(r1:r2,getBaseCoverage(bm_hct116_2,r1,r2,'binWidth',1),'g');

h3 = plot(r1:r2,getBaseCoverage(bm_dicer_1,r1,r2,'binWidth',1),'r');

h4 = plot(r1:r2,getBaseCoverage(bm_dicer_2,r1,r2,'binWidth',1),'m');

% mark the CpG islands within the [r1 r2] region

 Exploring Genome-wide Differences in DNA Methylation Profiles

2-109

for i = 1:numel(cpgi.Starts)

 if cpgi.Starts(i)>r1 && cpgi.Stops(i)<r2 % is CpG island inside [r1 r2]?

 px = [cpgi.Starts([i i]) cpgi.Stops([i i])]; % x-coordinates for patch

 py = [0 max(ylim) max(ylim) 0]; % y-coordinates for patch

 hp = patch(px,py,'r','FaceAlpha',.1,'EdgeColor','r','Tag','cpgi');

 end

end

% mark the gene at the bottom of the axes

px = range([1 1 2 2]);

py = [0 1 1 0]-2;

hq = patch(px,py,'b','FaceAlpha',.1,'EdgeColor','b','Tag','gene');

axis([r1 r1+4000 -4 30]) % zooms-in

fixGenomicPositionLabels(gca) % formats tick labels and adds datacursors

ylabel('Coverage')

xlabel('Chromosome 9 position')

title('DNA Methylation profiles along the promoter region of the FAM189A2 gene.')

legend([h1 h2 h3 h4 hp hq],'HCT116-1','HCT116-2','DICERex5-1','DICERex5-2','CpG Islands','FAM189A2 Gene','Location','NorthEast')

2 High-Throughput Sequence Analysis

2-110

Observe that the CpG islands are clearly unmethylated for both of the DICERex5
replicates.

References

[1] Serre, D., Lee, B.H., and Ting A.H., "MBD-isolated Genome Sequencing provides a
high-throughput and comprehensive survey of DNA methylation in the human genome",
Nucleic Acids Research, 38(2):391-9, 2010.

[2] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L., "Ultrafast and Memory-
efficient Alignment of Short DNA Sequences to the Human Genome", Genome Biology,
10(3):R25, 2009.

[3] Li, H., et al., "The Sequence Alignment/map (SAM) Format and SAMtools",
Bioinformatics, 25(16):2078-9, 2009.

[4] Gardiner-Garden, M. and Frommer, M., "CpG islands in vertebrate genomes", Journal
of Molecular Biology, 196(2):261-82, 1987.

[5] Ting, A.H., et al., "A Requirement for DICER to Maintain Full Promoter CpG Island
Hypermethylation in Human Cancer Cells", Cancer Research, 68(8):2570-5, 2008.

[6] Benjamini, Y. and Hochberg, Y., "Controlling the false discovery rate: a practical
and powerful approach to multiple testing", Journal of the Royal Statistical Society,
57(1):289-300, 1995.

3

Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide or amino
acid sequence using computational methods. Common tasks in sequence analysis are
identifying genes, determining the similarity of two genes, determining the protein coded
by a gene, and determining the function of a gene by finding a similar gene in another
organism with a known function.

• “Exploring a Nucleotide Sequence Using Command Line” on page 3-2
• “Exploring a Nucleotide Sequence Using the Sequence Viewer App” on page 3-20
• “Explore a Protein Sequence Using the Sequence Viewer App” on page 3-31
• “Sequence Alignment” on page 3-36
• “View and Align Multiple Sequences” on page 3-54

3 Sequence Analysis

3-2

Exploring a Nucleotide Sequence Using Command Line

In this section...

“Overview of Example” on page 3-2
“Searching the Web for Sequence Information” on page 3-2
“Reading Sequence Information from the Web” on page 3-5
“Determining Nucleotide Composition” on page 3-6
“Determining Codon Composition” on page 3-10
“Open Reading Frames” on page 3-15
“Amino Acid Conversion and Composition” on page 3-17

Overview of Example

After sequencing a piece of DNA, one of the first tasks is to investigate the nucleotide
content in the sequence. Starting with a DNA sequence, this example uses sequence
statistics functions to determine mono-, di-, and trinucleotide content, and to locate open
reading frames.

Searching the Web for Sequence Information

The following procedure illustrates how to use the MATLAB Help browser to search
the Web for information. In this example you are interested in studying the human
mitochondrial genome. While many genes that code for mitochondrial proteins are found
in the cell nucleus, the mitochondrial has genes that code for proteins used to produce
energy.

First research information about the human mitochondria and find the nucleotide
sequence for the genome. Next, look at the nucleotide content for the entire sequence.
And finally, determine open reading frames and extract specific gene sequences.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command
Window, type

web('http://www.ncbi.nlm.nih.gov/')

A separate browser window opens with the home page for the NCBI Web site.

 Exploring a Nucleotide Sequence Using Command Line

3-3

2 Search the NCBI Web site for information. For example, to search for the human
mitochondrion genome, from the Search list, select Genome , and in the Search list,
enter mitochondrion homo sapiens.

The NCBI Web search returns a list of links to relevant pages.

3 Select a result page. For example, click the link labeled NC_012920.

The MATLAB Help browser displays the NCBI page for the human mitochondrial
genome.

3 Sequence Analysis

3-4

 Exploring a Nucleotide Sequence Using Command Line

3-5

Reading Sequence Information from the Web

The following procedure illustrates how to find a nucleotide sequence in a public
database and read the sequence information into the MATLAB environment. Many
public databases for nucleotide sequences are accessible from the Web. The MATLAB
Command Window provides an integrated environment for bringing sequence
information into the MATLAB environment.

The consensus sequence for the human mitochondrial genome has the GenBank
accession number NC_012920. Since the whole GenBank entry is quite large and you
might only be interested in the sequence, you can get just the sequence information.

1 Get sequence information from a Web database. For example, to retrieve sequence
information for the human mitochondrial genome, in the MATLAB Command
Window, type

mitochondria = getgenbank('NC_012920','SequenceOnly',true)

The getgenbank function retrieves the nucleotide sequence from the GenBank
database and creates a character array.

mitochondria =

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT

TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG

GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT

CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTA

AAGT . . .

2 If you don't have a Web connection, you can load the data from a MAT file included
with the Bioinformatics Toolbox software, using the command

load mitochondria

The load function loads the sequence mitochondria into the MATLAB Workspace.
3 Get information about the sequence. Type

whos mitochondria

Information about the size of the sequence displays in the MATLAB Command
Window.

 Name Size Bytes Class Attributes

3 Sequence Analysis

3-6

 mitochondria 1x16569 33138 char

Determining Nucleotide Composition

The following procedure illustrates how to determine the monomers and dimers, and
then visualize data in graphs and bar plots. Sections of a DNA sequence with a high
percent of A+T nucleotides usually indicate intergenic parts of the sequence, while low A
+T and higher G+C nucleotide percentages indicate possible genes. Many times high CG
dinucleotide content is located before a gene.

After you read a sequence into the MATLAB environment, you can use the sequence
statistics functions to determine if your sequence has the characteristics of a protein-
coding region. This procedure uses the human mitochondrial genome as an example. See
“Reading Sequence Information from the Web” on page 3-5.

1 Plot monomer densities and combined monomer densities in a graph. In the
MATLAB Command Window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.

 Exploring a Nucleotide Sequence Using Command Line

3-7

2 Count the nucleotides using the basecount function.

basecount(mitochondria)

A list of nucleotide counts is shown for the 5'-3' strand.

ans =

 A: 5124

 C: 5181

 G: 2169

 T: 4094

3 Count the nucleotides in the reverse complement of a sequence using the
seqrcomplement function.

basecount(seqrcomplement(mitochondria))

3 Sequence Analysis

3-8

As expected, the nucleotide counts on the reverse complement strand are
complementary to the 5'-3' strand.

ans =

 A: 4094

 C: 2169

 G: 5181

 T: 5124

4 Use the function basecount with the chart option to visualize the nucleotide
distribution.

figure

basecount(mitochondria,'chart','pie');

A pie chart displays in the MATLAB Figure window.

5 Count the dimers in a sequence and display the information in a bar chart.

 Exploring a Nucleotide Sequence Using Command Line

3-9

figure

dimercount(mitochondria,'chart','bar')

ans =

 AA: 1604

 AC: 1495

 AG: 795

 AT: 1230

 CA: 1534

 CC: 1771

 CG: 435

 CT: 1440

 GA: 613

 GC: 711

 GG: 425

 GT: 419

 TA: 1373

 TC: 1204

 TG: 513

 TT: 1004

3 Sequence Analysis

3-10

Determining Codon Composition

The following procedure illustrates how to look at codons for the six reading frames.
Trinucleotides (codon) code for an amino acid, and there are 64 possible codons in a
nucleotide sequence. Knowing the percent of codons in your sequence can be helpful
when you are comparing with tables for expected codon usage.

After you read a sequence into the MATLAB environment, you can analyze the sequence
for codon composition. This procedure uses the human mitochondria genome as an
example. See “Reading Sequence Information from the Web” on page 3-5.

1 Count codons in a nucleotide sequence. In the MATLAB Command Window, type

codoncount(mitochondria)

The codon counts for the first reading frame displays.

 Exploring a Nucleotide Sequence Using Command Line

3-11

AAA - 167 AAC - 171 AAG - 71 AAT - 130

ACA - 137 ACC - 191 ACG - 42 ACT - 153

AGA - 59 AGC - 87 AGG - 51 AGT - 54

ATA - 126 ATC - 131 ATG - 55 ATT - 113

CAA - 146 CAC - 145 CAG - 68 CAT - 148

CCA - 141 CCC - 205 CCG - 49 CCT - 173

CGA - 40 CGC - 54 CGG - 29 CGT - 27

CTA - 175 CTC - 142 CTG - 74 CTT - 101

GAA - 67 GAC - 53 GAG - 49 GAT - 35

GCA - 81 GCC - 101 GCG - 16 GCT - 59

GGA - 36 GGC - 47 GGG - 23 GGT - 28

GTA - 43 GTC - 26 GTG - 18 GTT - 41

TAA - 157 TAC - 118 TAG - 94 TAT - 107

TCA - 125 TCC - 116 TCG - 37 TCT - 103

TGA - 64 TGC - 40 TGG - 29 TGT - 26

TTA - 96 TTC - 107 TTG - 47 TTT - 78

2 Count the codons in all six reading frames and plot the results in heat maps.

for frame = 1:3

 figure

 subplot(2,1,1);

 codoncount(mitochondria,'frame',frame,'figure',true,...

 'geneticcode','Vertebrate Mitochondrial');

 title(sprintf('Codons for frame %d',frame));

 subplot(2,1,2);

 codoncount(mitochondria,'reverse',true,'frame',frame,...

 'figure',true,'geneticcode','Vertebrate Mitochondrial');

 title(sprintf('Codons for reverse frame %d',frame));

end

Heat maps display all 64 codons in the 6 reading frames.

3 Sequence Analysis

3-12

 Exploring a Nucleotide Sequence Using Command Line

3-13

3 Sequence Analysis

3-14

 Exploring a Nucleotide Sequence Using Command Line

3-15

Open Reading Frames

The following procedure illustrates how to locate the open reading frames using a specific
genetic code. Determining the protein-coding sequence for a eukaryotic gene can be
a difficult task because introns (noncoding sections) are mixed with exons. However,
prokaryotic genes generally do not have introns and mRNA sequences have the introns
removed. Identifying the start and stop codons for translation determines the protein-
coding section, or open reading frame (ORF), in a sequence. Once you know the ORF for
a gene or mRNA, you can translate a nucleotide sequence to its corresponding amino acid
sequence.

After you read a sequence into the MATLAB environment, you can analyze the sequence
for open reading frames. This procedure uses the human mitochondria genome as an
example. See “Reading Sequence Information from the Web” on page 3-5.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the MATLAB
Command Window, type:

seqshoworfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for NC_012920,
there are fewer genes than expected. This is because vertebrate mitochondria use
a genetic code slightly different from the standard genetic code. For a list of genetic
codes, see the Genetic Code table in the aa2nt reference page.

2 Display ORFs using the Vertebrate Mitochondrial code.

orfs= seqshoworfs(mitochondria,...

 'GeneticCode','Vertebrate Mitochondrial',...

 'alternativestart',true);

Notice that there are now two large ORFs on the third reading frame. One starts
at position 4470 and the other starts at 5904. These correspond to the genes ND2
(NADH dehydrogenase subunit 2 [Homo sapiens]) and COX1 (cytochrome c oxidase
subunit I) genes.

3 Find the corresponding stop codon. The start and stop positions for ORFs have the
same indices as the start positions in the fields Start and Stop.

ND2Start = 4470;

StartIndex = find(orfs(3).Start == ND2Start)

ND2Stop = orfs(3).Stop(StartIndex)

The stop position displays.

3 Sequence Analysis

3-16

ND2Stop =

 5511

4 Using the sequence indices for the start and stop of the gene, extract the
subsequence from the sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop)

The subsequence (protein-coding region) is stored in ND2Seq and displayed on the
screen.

attaatcccctggcccaacccgtcatctactctaccatctttgcaggcac

actcatcacagcgctaagctcgcactgattttttacctgagtaggcctag

aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct

cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgcatc

cataatccttc . . .

5 Determine the codon distribution.

codoncount (ND2Seq)

The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA - 10 AAC - 14 AAG - 2 AAT - 6

ACA - 11 ACC - 24 ACG - 3 ACT - 5

AGA - 0 AGC - 4 AGG - 0 AGT - 1

ATA - 23 ATC - 24 ATG - 1 ATT - 8

CAA - 8 CAC - 3 CAG - 2 CAT - 1

CCA - 4 CCC - 12 CCG - 2 CCT - 5

CGA - 0 CGC - 3 CGG - 0 CGT - 1

CTA - 26 CTC - 18 CTG - 4 CTT - 7

GAA - 5 GAC - 0 GAG - 1 GAT - 0

GCA - 8 GCC - 7 GCG - 1 GCT - 4

GGA - 5 GGC - 7 GGG - 0 GGT - 1

GTA - 3 GTC - 2 GTG - 0 GTT - 3

TAA - 0 TAC - 8 TAG - 0 TAT - 2

TCA - 7 TCC - 11 TCG - 1 TCT - 4

TGA - 10 TGC - 0 TGG - 1 TGT - 0

TTA - 8 TTC - 7 TTG - 1 TTT - 8

6 Look up the amino acids for codons ATA, CTA, ACC, and ATC.

aminolookup('code',nt2aa('ATA'))

aminolookup('code',nt2aa('CTA'))

aminolookup('code',nt2aa('ACC'))

 Exploring a Nucleotide Sequence Using Command Line

3-17

aminolookup('code',nt2aa('ATC'))

The following displays:

Ile isoleucine

Leu leucine

Thr threonine

Ile isoleucine

Amino Acid Conversion and Composition

The following procedure illustrates how to extract the protein-coding sequence from a
gene sequence and convert it to the amino acid sequence for the protein. Determining the
relative amino acid composition of a protein will give you a characteristic profile for the
protein. Often, this profile is enough information to identify a protein. Using the amino
acid composition, atomic composition, and molecular weight, you can also search public
databases for similar proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to an amino
sequence and determine its amino acid composition. This procedure uses the human
mitochondria genome as an example. See “Open Reading Frames” on page 3-15.

1 Convert a nucleotide sequence to an amino acid sequence. In this example, only the
protein-coding sequence between the start and stop codons is converted.

ND2AASeq = nt2aa(ND2Seq,'geneticcode',...

 'Vertebrate Mitochondrial')

The sequence is converted using the Vertebrate Mitochondrial genetic code.
Because the property AlternativeStartCodons is set to 'true' by default, the
first codon att is converted to M instead of I.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNP

RSTEAAIKYFLTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMM

AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN

VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNM

TILNLTIYIILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS

LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST

SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

2 Compare your conversion with the published conversion in the GenPept database.

ND2protein = getgenpept('YP_003024027','sequenceonly',true)

3 Sequence Analysis

3-18

The getgenpept function retrieves the published conversion from the NCBI
database and reads it into the MATLAB Workspace.

3 Count the amino acids in the protein sequence.

aacount(ND2AASeq, 'chart','bar')

A bar graph displays. Notice the high content for leucine, threonine and isoleucine,
and also notice the lack of cysteine and aspartic acid.

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp(ND2AASeq)

molweight (ND2AASeq)

The following displays in the MATLAB Workspace:

ans =

 C: 1818

 H: 2882

 N: 420

 Exploring a Nucleotide Sequence Using Command Line

3-19

 O: 471

 S: 25

ans =

 3.8960e+004

If this sequence was unknown, you could use this information to identify the protein
by comparing it with the atomic composition of other proteins in a database.

3 Sequence Analysis

3-20

Exploring a Nucleotide Sequence Using the Sequence Viewer App

In this section...

“Overview of the Sequence Viewer” on page 3-20
“Importing a Sequence into the Sequence Viewer” on page 3-20
“Viewing Nucleotide Sequence Information” on page 3-22
“Searching for Words” on page 3-24
“Exploring Open Reading Frames” on page 3-27
“Closing the Sequence Viewer” on page 3-30

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics
Toolbox toolbox. Instead of entering commands in the MATLAB Command Window, you
can select and enter options using the app.

Importing a Sequence into the Sequence Viewer

The first step when analyzing a nucleotide or amino acid sequence is to import sequence
information into the MATLAB environment. The Sequence Viewer can connect to
Web databases such as NCBI and EMBL and read information into the MATLAB
environment.

The following procedure illustrates how to retrieve sequence information from the NCBI
database on the Web. This example uses the GenBank accession number NM_000520,
which is the human gene HEXA that is associated with Tay-Sachs disease.

1 In the MATLAB Command Window, type

seqviewer

Alternatively, click Sequence Viewer on the Apps tab.

The Sequence Viewer opens without a sequence loaded. Notice that the panes to
the right and bottom are blank.

2 To retrieve a sequence from the NCBI database, select File > Download Sequence
from > NCBI.

 Exploring a Nucleotide Sequence Using the Sequence Viewer App

3-21

The Download Sequence from NCBI dialog box opens.

3 In the Enter Sequence box, type an accession number for an NCBI database entry,
for example, NM_000520. Click the Nucleotide option button, and then click OK.

The MATLAB software accesses the NCBI database on the Web, loads nucleotide
sequence information for the accession number you entered, and calculates some
basic statistics.

3 Sequence Analysis

3-22

Viewing Nucleotide Sequence Information

After you import a sequence into the Sequence Viewer app, you can read information
stored with the sequence, or you can view graphic representations for ORFs and CDSs.

1 In the left pane tree, click Comments. The right pane displays general information
about the sequence.

2 Now click Features. The right pane displays NCBI feature information, including
index numbers for a gene and any CDS sequences.

3 Click ORF to show the search results for ORFs in the six reading frames.

 Exploring a Nucleotide Sequence Using the Sequence Viewer App

3-23

4 Click Annotated CDS to show the protein coding part of a nucleotide sequence.

3 Sequence Analysis

3-24

Searching for Words

The following procedure illustrates how to search for characteristic words and sequence
patterns. You will search for sequence patterns like the TATAA box and patterns for
specific restriction enzymes.

1 Select Sequence > Find Word.
2 In the Find Word dialog box, type a sequence word or pattern, for example, atg, and

then click Find.

 Exploring a Nucleotide Sequence Using the Sequence Viewer App

3-25

The Sequence Viewer searches and displays the location of the selected word.

3 Sequence Analysis

3-26

 Exploring a Nucleotide Sequence Using the Sequence Viewer App

3-27

3
Clear the display by clicking the Clear Word Selection button on the toolbar.

Exploring Open Reading Frames

The following procedure illustrates how to identify the protein coding part of a nucleotide
sequence and copy it into a new view. Identifying coding sections of a nucleotide sequence
is a common bioinformatics task. After locating the coding part of a sequence, you can
copy it to a new view, translate it to an amino acid sequence, and continue with your
analysis.

1 In the left pane, click ORF.

The Sequence Viewer displays the ORFs for the six reading frames in the lower-
right pane. Hover the cursor over a frame to display information about it.

2 Click the longest ORF on reading frame 2.

The ORF is highlighted to indicate the part of the sequence that is selected.

3 Right-click the selected ORF and then select Export to Workspace. In the
Export to MATLAB Workspace dialog box, type a variable name, for example,
NM_000520_ORF_2, then click Export.

3 Sequence Analysis

3-28

The NM_000520_ORF_2 variable is added to the MATLAB Workspace.
4 Select File > Import from Workspace. Type the name of a variable with an

exported ORF, for example, NM_000520_ORF_2, and then click Import.

The Sequence Viewer adds a tab at the bottom for the new sequence while leaving
the original sequence open.

 Exploring a Nucleotide Sequence Using the Sequence Viewer App

3-29

5 In the left pane, click Full Translation. Select Display > Amino Acid Residue
Display > One Letter Code.

The Sequence Viewer displays the amino acid sequence below the nucleotide
sequence.

3 Sequence Analysis

3-30

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following
syntax:

seqviewer('close')

 Explore a Protein Sequence Using the Sequence Viewer App

3-31

Explore a Protein Sequence Using the Sequence Viewer App

In this section...

“Overview of the Sequence Viewer” on page 3-31
“Viewing Amino Acid Sequence Statistics” on page 3-31
“Closing the Sequence Viewer” on page 3-35
“References” on page 3-35

Overview of the Sequence Viewer

The Sequence Viewer integrates many of the sequence functions in the Bioinformatics
Toolbox toolbox. Instead of entering commands in the MATLAB Command Window, you
can select and enter options using the app.

Viewing Amino Acid Sequence Statistics

The following procedure illustrates how to view an amino acid sequence for an ORF
located in a nucleotide sequence. You can import your own amino acid sequence, or
you can get a protein sequence from the GenBank database. This example uses the
GenBank accession number NP_000511.1, which is the alpha subunit for a human
enzyme associated with Tay-Sachs disease.

1 Select File > Download Sequence from > NCBI.

The Download Sequence from NCBI dialog box opens.
2 In the Enter Sequence box, type an accession number for an NCBI database entry,

for example, NP_000511.1. Click the Protein option button, and then click OK.

3 Sequence Analysis

3-32

The Sequence Viewer accesses the NCBI database on the Web and loads amino
acid sequence information for the accession number you entered.

 Explore a Protein Sequence Using the Sequence Viewer App

3-33

3 Select Display > Amino Acid Color Scheme, and then select Charge, Function,
Hydrophobicity, Structure, or Taylor. For example, select Function.

The display colors change to highlight charge information about the amino acid
residues. The following table shows color legends for the amino acid color schemes.

3 Sequence Analysis

3-34

Amino Acid Color Scheme Color Legend

Charge • Acidic — Red
• Basic — Light Blue
• Neutral — Black

Function • Acidic — Red
• Basic — Light Blue
• Hydropobic, nonpolar — Black
• Polar, uncharged — Green

Hydrophobicity • Hydrophilic — Light Blue
• Hydrophobic — Black

 Explore a Protein Sequence Using the Sequence Viewer App

3-35

Amino Acid Color Scheme Color Legend

Structure • Ambivalent — Dark Green
• External — Light Blue
• Internal — Orange

Taylor Each amino acid is assigned its own color, based
on the colors proposed by W.R. Taylor.

Closing the Sequence Viewer

Close the Sequence Viewer from the MATLAB command line using the following
syntax:

seqviewer('close')

References

[1] Taylor, W.R. (1997). Residual colours: a proposal for aminochromography. Protein
Engineering 10, 7, 743–746.

3 Sequence Analysis

3-36

Sequence Alignment

In this section...

“Overview of Example” on page 3-36
“Find a Model Organism to Study” on page 3-36
“Retrieve Sequence Information from a Public Database” on page 3-38
“Search a Public Database for Related Genes” on page 3-40
“Locate Protein Coding Sequences” on page 3-42
“Compare Amino Acid Sequences” on page 3-45

Overview of Example

Determining the similarity between two sequences is a common task in computational
biology. Starting with a nucleotide sequence for a human gene, this example uses
alignment algorithms to locate and verify a corresponding gene in a model organism.

Find a Model Organism to Study

In this example, you are interested in studying Tay-Sachs disease. Tay-Sachs is an
autosomal recessive disease caused by the absence of the enzyme beta-hexosaminidase
A (Hex A). This enzyme is responsible for the breakdown of gangliosides (GM2) in brain
and nerve cells.

First, research information about Tay-Sachs and the enzyme that is associated with this
disease, then find the nucleotide sequence for the human gene that codes for the enzyme,
and finally find a corresponding gene in another organism to use as a model for study.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB Command
window, type

web('http://www.ncbi.nlm.nih.gov/books/NBK22250/')

The MATLAB Help browser opens with the Tay-Sachs disease page in the Genes
and Diseases section of the NCBI web site. This section provides a comprehensive
introduction to medical genetics. In particular, this page contains an introduction
and pictorial representation of the enzyme Hex A and its role in the metabolism of
the lipid GM2 ganglioside.

 Sequence Alignment

3-37

2 After completing your research, you have concluded the following:

The gene HEXA codes for the alpha subunit of the dimer enzyme hexosaminidase
A (Hex A), while the gene HEXB codes for the beta subunit of the enzyme. A third
gene, GM2A, codes for the activator protein GM2. However, it is a mutation in the
gene HEXA that causes Tay-Sachs.

3 Sequence Analysis

3-38

Retrieve Sequence Information from a Public Database

The following procedure illustrates how to find the nucleotide sequence for a human gene
in a public database and read the sequence information into the MATLAB environment.
Many public databases for nucleotide sequences (for example, GenBank, EMBL-EBI)
are accessible from the Web. The MATLAB Command Window with the MATLAB Help
browser provide an integrated environment for searching the Web and bringing sequence
information into the MATLAB environment.

After you locate a sequence, you need to move the sequence data into the MATLAB
Workspace.

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command
Widow, type

web('http://www.ncbi.nlm.nih.gov/')

The MATLAB Help browser window opens with the NCBI home page.
2 Search for the gene you are interested in studying. For example, from the Search

list, select Nucleotide, and in the for box enter Tay-Sachs.

The search returns entries for the genes that code the alpha and beta subunits of the
enzyme hexosaminidase A (Hex A), and the gene that codes the activator enzyme.
The NCBI reference for the human gene HEXA has accession number NM_000520.

 Sequence Alignment

3-39

3 Get sequence data into the MATLAB environment. For example, to get sequence
information for the human gene HEXA, type

3 Sequence Analysis

3-40

humanHEXA = getgenbank('NM_000520')

Note: Blank spaces in GenBank accession numbers use the underline character.
Entering 'NM 00520' returns the wrong entry.

The human gene is loaded into the MATLAB Workspace as a structure.
humanHEXA =

 LocusName: 'NM_000520'

 LocusSequenceLength: '2255'

 LocusNumberofStrands: ''

 LocusTopology: 'linear'

 LocusMoleculeType: 'mRNA'

 LocusGenBankDivision: 'PRI'

 LocusModificationDate: '13-AUG-2006'

 Definition: 'Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRNA.'

 Accession: 'NM_000520'

 Version: 'NM_000520.2'

 GI: '13128865'

 Project: []

 Keywords: []

 Segment: []

 Source: 'Homo sapiens (human)'

 SourceOrganism: [4x65 char]

 Reference: {1x58 cell}

 Comment: [15x67 char]

 Features: [74x74 char]

 CDS: [1x1 struct]

 Sequence: [1x2255 char]

 SearchURL: [1x108 char]

 RetrieveURL: [1x97 char]

Search a Public Database for Related Genes

The following procedure illustrates how to find the nucleotide sequence for a mouse
gene related to a human gene, and read the sequence information into the MATLAB
environment. The sequence and function of many genes is conserved during the evolution
of species through homologous genes. Homologous genes are genes that have a common
ancestor and similar sequences. One goal of searching a public database is to find
similar genes. If you are able to locate a sequence in a database that is similar to your
unknown gene or protein, it is likely that the function and characteristics of the known
and unknown genes are the same.

After finding the nucleotide sequence for a human gene, you can do a BLAST search or
search in the genome of another organism for the corresponding gene. This procedure
uses the mouse genome as an example.

 Sequence Alignment

3-41

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB Command
window, type

web('http://www.ncbi.nlm.nih.gov')

2 Search the nucleotide database for the gene or protein you are interested in
studying. For example, from the Search list, select Nucleotide, and in the for box
enter hexosaminidase A.

The search returns entries for the mouse and human genomes. The NCBI reference
for the mouse gene HEXA has accession number AK080777.

3 Get sequence information for the mouse gene into the MATLAB environment. Type

mouseHEXA = getgenbank('AK080777')

The mouse gene sequence is loaded into the MATLAB Workspace as a structure.

mouseHEXA =

 LocusName: 'AK080777'

 LocusSequenceLength: '1839'

 LocusNumberofStrands: ''

 LocusTopology: 'linear'

 LocusMoleculeType: 'mRNA'

 LocusGenBankDivision: 'HTC'

 LocusModificationDate: '02-SEP-2005'

 Definition: [1x150 char]

 Accession: 'AK080777'

 Version: 'AK080777.1'

 GI: '26348756'

 Project: []

 Keywords: 'HTC; CAP trapper.'

 Segment: []

 Source: 'Mus musculus (house mouse)'

 SourceOrganism: [4x65 char]

 Reference: {1x8 cell}

 Comment: [8x66 char]

3 Sequence Analysis

3-42

 Features: [33x74 char]

 CDS: [1x1 struct]

 Sequence: [1x1839 char]

 SearchURL: [1x107 char]

 RetrieveURL: [1x97 char]

Locate Protein Coding Sequences

The following procedure illustrates how to convert a sequence from nucleotides to amino
acids and identify the open reading frames. A nucleotide sequence includes regulatory
sequences before and after the protein coding section. By analyzing this sequence, you
can determine the nucleotides that code for the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can determine the
protein coding sequences. This procedure uses the human gene HEXA and mouse gene
HEXA as an example.

1 If you did not retrieve gene data from the Web, you can load example data from
a MAT-file included with the Bioinformatics Toolbox software. In the MATLAB
Command window, type

load hexosaminidase

The structures humanHEXA and mouseHEXA load into the MATLAB Workspace.
2 Locate open reading frames (ORFs) in the human gene. For example, for the human

gene HEXA, type

humanORFs = seqshoworfs(humanHEXA.Sequence)

seqshoworfs creates the output structure humanORFs. This structure contains
the position of the start and stop codons for all open reading frames (ORFs) on each
reading frame.

humanORFs =

1x3 struct array with fields:

 Start

 Stop

The Help browser opens displaying the three reading frames with the ORFs colored
blue, red, and green. Notice that the longest ORF is in the first reading frame.

 Sequence Alignment

3-43

3 Locate open reading frames (ORFs) in the mouse gene. Type:

3 Sequence Analysis

3-44

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

seqshoworfs creates the structure mouseORFS.

mouseORFs =

1x3 struct array with fields:

 Start

 Stop

The mouse gene shows the longest ORF on the first reading frame.

 Sequence Alignment

3-45

Compare Amino Acid Sequences

The following procedure illustrates how to use global and local alignment functions
to compare two amino acid sequences. You could use alignment functions to look for
similarities between two nucleotide sequences, but alignment functions return more
biologically meaningful results when you are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences, you can
convert the protein coding sections of the nucleotide sequences to their corresponding
amino acid sequences, and then you can compare them for similarities.

1 Using the open reading frames identified previously, convert the human and mouse
DNA sequences to the amino acid sequences. Because both the human and mouse
HEXA genes were in the first reading frames (default), you do not need to indicate
which frame. Type

humanProtein = nt2aa(humanHEXA.Sequence);

mouseProtein = nt2aa(mouseHEXA.Sequence);

2 Draw a dot plot comparing the human and mouse amino acid sequences. Type

seqdotplot(mouseProtein,humanProtein,4,3)

ylabel('Mouse hexosaminidase A (alpha subunit)')

xlabel('Human hexosaminidase A (alpha subunit)')

Dot plots are one of the easiest ways to look for similarity between sequences. The
diagonal line shown below indicates that there may be a good alignment between the
two sequences.

3 Sequence Analysis

3-46

3 Globally align the two amino acid sequences, using the Needleman-Wunsch
algorithm. Type

[GlobalScore, GlobalAlignment] = nwalign(humanProtein,...

 mouseProtein);

showalignment(GlobalAlignment)

showalignment displays the global alignment of the two sequences in the Help
browser. Notice that the calculated identity between the two sequences is 60%.

 Sequence Alignment

3-47

3 Sequence Analysis

3-48

The alignment is very good between amino acid position 69 and 599, after which the
two sequences appear to be unrelated. Notice that there is a stop (*) in the sequence
at this point. If you shorten the sequences to include only the amino acids that are in
the protein you might get a better alignment. Include the amino acid positions from
the first methionine (M) to the first stop (*) that occurs after the first methionine.

4 Trim the sequence from the first start amino acid (usually M) to the first stop (*) and
then try alignment again. Find the indices for the stops in the sequences.

humanStops = find(humanProtein == '*')

humanStops =

 41 599 611 713 722 730

mouseStops = find(mouseProtein == '*')

mouseStops =

 539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at position
70, and the first stop after that position is actually the second stop in the sequence
(position 599). Looking at the amino acid sequence for mouseProtein, the first M is
at position 11, and the first stop after that position is the first stop in the sequence
(position 557).

5 Truncate the sequences to include only amino acids in the protein and the stop.

humanProteinORF = humanProtein(70:humanStops(2))

humanProteinORF =

MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDV

SSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVV

TPGCNQLPTLESVENYTLTINDDQCLLLSETVWGALRGLETFSQLVWKSA

EGTFFINKTEIEDFPRFPHRGLLLDTSRHYLPLSSILDTLDVMAYNKLNV

FHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVKEVIEYARLRG

IRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF

MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPEIQDFMRKKGFGEDFKQ

LESFYIQTLLDIVSSYGKGYVVWQEVFDNKVKIQPDTIIQVWREDIPVNY

MKELELVTKAGFRALLSAPWYLNRISYGPDWKDFYIVEPLAFEGTPEQKA

LVIGGEACMWGEYVDNTNLVPRLWPRAGAVAERLWSNKLTSDLTFAYERL

 Sequence Alignment

3-49

SHFRCELLRRGVQAQPLNVGFCEQEFEQT*

mouseProteinORF = mouseProtein(11:mouseStops(1))

mouseProteinORF =

MAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYTLYPNNFQFRYHV

SSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNILVVSVV

TAECNEFPNLESVENYTLTINDDQCLLASETVWGALRGLETFSQLVWKSA

EGTFFINKTKIKDFPRFPHRGVLLDTSRHYLPLSSILDTLDVMAYNKFNV

FHWHLVDDSSFPYESFTFPELTRKGSFNPVTHIYTAQDVKEVIEYARLRG

IRVLAEFDTPGHTLSWGPGAPGLLTPCYSGSHLSGTFGPVNPSLNSTYDF

MSTLFLEISSVFPDFYLHLGGDEVDFTCWKSNPNIQAFMKKKGFTDFKQL

ESFYIQTLLDIVSDYDKGYVVWQEVFDNKVKVRPDTIIQVWREEMPVEYM

LEMQDITRAGFRALLSAPWYLNRVKYGPDWKDMYKVEPLAFHGTPEQKAL

VIGGEACMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTTNIDFAFKRLS

HFRCELVRRGIQAQPISVGCCEQEFEQT*

6 Globally align the trimmed amino acid sequences. Type

[GlobalScore_trim, GlobalAlignment_trim] = nwalign(humanProteinORF,...

 mouseProteinORF);

showalignment(GlobalAlignment_trim)

showalignment displays the results for the second global alignment. Notice that the
percent identity for the untrimmed sequences is 60% and 84% for trimmed sequences.

3 Sequence Analysis

3-50

7 Another way to truncate an amino acid sequence to only those amino acids in
the protein is to first truncate the nucleotide sequence with indices from the

 Sequence Alignment

3-51

seqshoworfs function. Remember that the ORF for the human HEXA gene and the
ORF for the mouse HEXA were both on the first reading frame.

humanORFs = seqshoworfs(humanHEXA.Sequence)

humanORFs =

1x3 struct array with fields:

 Start

 Stop

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

mouseORFs =

1x3 struct array with fields:

 Start

 Stop

humanPORF = nt2aa(humanHEXA.Sequence(humanORFs(1).Start(1):...

 humanORFs(1).Stop(1)));

mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1).Start(1):...

 mouseORFs(1).Stop(1)));

[GlobalScore2, GlobalAlignment2] = nwalign(humanPORF, mousePORF);

Show the alignment in the Help browser.

showalignment(GlobalAlignment2)

The result from first truncating a nucleotide sequence before converting it to an
amino acid sequence is the same as the result from truncating the amino acid
sequence after conversion. See the result in step 6.

An alternative method to working with subsequences is to use a local alignment
function with the nontruncated sequences.

8 Locally align the two amino acid sequences using a Smith-Waterman algorithm.
Type

[LocalScore, LocalAlignment] = swalign(humanProtein,...

3 Sequence Analysis

3-52

 mouseProtein)

LocalScore =

 1057

LocalAlignment =

RGDQR-AMTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYV . . .

|| | ||:: ||| |||||||:| ||||||||| :|| :||: . . .

RGAGRWAMAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYT . . .

9 Show the alignment in color.

showalignment(LocalAlignment)

 Sequence Alignment

3-53

3 Sequence Analysis

3-54

View and Align Multiple Sequences

In this section...

“Overview of the Sequence Alignment and Phylogenetic Tree Apps” on page 3-54
“Load Sequence Data and Viewing the Phylogenetic Tree” on page 3-54
“Select a Subset of Data from the Phylogenetic Tree” on page 3-55
“Align Multiple Sequences” on page 3-57
“Adjust Multiple Sequence Alignments Manually” on page 3-58
“Close the Sequence Alignment App” on page 3-61

Overview of the Sequence Alignment and Phylogenetic Tree Apps

The Sequence Alignment app integrates many sequence and multiple alignment
functions in the toolbox. Instead of entering commands in the MATLAB Command
Window, you can use this app to visually inspect a multiple alignment and make manual
adjustments.

The Phylogenetic Tree app allows you to view, edit, and explore phylogenetic tree data.
It also allows branch pruning, reordering, renaming, and distance exploring. It can also
open or save Newick or ClustalW tree formatted files.

Load Sequence Data and Viewing the Phylogenetic Tree

Load unaligned sequence data into the MATLAB environment, and create a phylogenetic
tree.

1 Load sequence data.

load primates.mat

2 Create a phylogenetic tree.

tree = seqlinkage(seqpdist(primates),'single', primates);

3 View the phylogenetic tree.

phytreeviewer(tree)

 View and Align Multiple Sequences

3-55

Select a Subset of Data from the Phylogenetic Tree

Select the human and chimp branches.

1 From the toolbar, click the Prune icon.

3 Sequence Analysis

3-56

2 Click the branches to prune (remove) from the tree. For this example, click the
branch nodes for gorillas, orangutans, and Neanderthals.

3 Export the selected branches to a second tree. Select File > Export to Workspace,
and then select Only Displayed.

4 In the Export to dialog box, enter the name of a variable. For example, enter tree2,
and then click OK.

 View and Align Multiple Sequences

3-57

5 Extract sequences from the tree object.

primates2 = primates(seqmatch(get(tree2, 'Leafnames'),{primates.Header}));

Align Multiple Sequences

After selecting a set of related sequences, you can align them and view the results.

1 Align multiple sequences.

ma = multialign(primates2);

2 View the aligned sequences in the Sequence Alignment app.

seqalignviewer(ma);

The aligned sequences appear as shown below.

3 Sequence Analysis

3-58

Adjust Multiple Sequence Alignments Manually

Algorithms for aligning multiple sequences do not always produce an optimal result.
By visually inspecting the alignment, you can identify areas that could use a manual
adjustment to improve the alignment.

1 Identify an area where you could improve the alignment.

 View and Align Multiple Sequences

3-59

2 Click a letter to select it, and then move the cursor over the red direction bar. The
cursor changes to a hand.

3 Click and drag the sequence to the right to insert a gap. If there is a gap to the left,
you can also move the sequence to the left and eliminate the gap.

3 Sequence Analysis

3-60

Alternately, to insert a gap, select a character, and then click the Insert Gap icon on
the toolbar or press the spacebar.

Note: You cannot delete or add letters to a sequence, but you can add or delete gaps.
If all of the sequences at one alignment position have gaps, you can delete that
column of gaps.

4 Continue adding gaps and moving sequences to improve the alignment.

 View and Align Multiple Sequences

3-61

Close the Sequence Alignment App

Close the Sequence Alignment app from the MATLAB command line using the
following syntax:

seqalignviewer('close')

4

Microarray Analysis

• “Managing Gene Expression Data in Objects” on page 4-2
• “Representing Expression Data Values in DataMatrix Objects” on page 4-5
• “Representing Expression Data Values in ExptData Objects” on page 4-11
• “Representing Sample and Feature Metadata in MetaData Objects” on page 4-15
• “Representing Experiment Information in a MIAME Object” on page 4-21
• “Representing All Data in an ExpressionSet Object” on page 4-25
• “Visualizing Microarray Images” on page 4-30
• “Analyzing Gene Expression Profiles” on page 4-45
• “Detecting DNA Copy Number Alteration in Array-Based CGH Data” on page 4-60
• “Exploring Gene Expression Data” on page 4-81

4 Microarray Analysis

4-2

Managing Gene Expression Data in Objects

Microarray gene expression experiments are complex, containing data and information
from various sources. The data and information from such an experiment is typically
subdivided into four categories:

• Measured expression data values
• Sample metadata
• Microarray feature metadata
• Descriptions of experiment methods and conditions

In MATLAB, you can represent all the previous data and information in an
ExpressionSet object, which typically contains the following objects:

• One ExptData object containing expression values from a microarray experiment in
one or more DataMatrix objects

• One MetaData object containing sample metadata in two dataset arrays
• One MetaData object containing feature metadata in two dataset arrays
• One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component
objects.

 Managing Gene Expression Data in Objects

4-3

Each element (DataMatrix object) in the ExpressionSet object has an element name.
Also, there is always one DataMatrix object whose element name is Expressions.

4 Microarray Analysis

4-4

An ExpressionSet object lets you store, manage, and subset the data from a microarray
gene expression experiment. An ExpressionSet object includes properties and methods
that let you access, retrieve, and change data, metadata, and other information about the
microarray experiment. These properties and methods are useful to view and analyze the
data. For a list of the properties and methods, see ExpressionSet class.

To learn more about constructing and using objects for microarray gene expression data
and information, see:

• “Representing Expression Data Values in DataMatrix Objects” on page 4-5
• “Representing Expression Data Values in ExptData Objects” on page 4-11
• “Representing Sample and Feature Metadata in MetaData Objects” on page 4-15
• “Representing Experiment Information in a MIAME Object” on page 4-21
• “Representing All Data in an ExpressionSet Object” on page 4-25

 Representing Expression Data Values in DataMatrix Objects

4-5

Representing Expression Data Values in DataMatrix Objects

In this section...

“Overview of DataMatrix Objects” on page 4-5
“Constructing DataMatrix Objects” on page 4-6
“Getting and Setting Properties of a DataMatrix Object” on page 4-6
“Accessing Data in DataMatrix Objects” on page 4-7

Overview of DataMatrix Objects

The toolbox includes functions, objects, and methods for creating, storing, and accessing
microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix object to
encapsulate data and metadata (row and column names) from a microarray experiment.
A DataMatrix object stores experimental data in a matrix, with rows typically
corresponding to gene names or probe identifiers, and columns typically corresponding to
sample identifiers. A DataMatrix object also stores metadata, including the gene names
or probe identifiers (as the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the same way
you reference data in a MATLAB array, that is, by using linear or logical indexing.
Alternately, you can reference this experimental data by gene (probe) identifiers and
sample identifiers. Indexing by these identifiers lets you quickly and conveniently access
subsets of the data without having to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to DataMatrix objects
by means of methods. These methods let you modify, combine, compare, analyze, plot,
and access information from DataMatrix objects. Additionally, you can easily extend the
functionality by using general element-wise functions, dmarrayfun and dmbsxfun, and
by manually accessing the properties of a DataMatrix object.

Note: For tables describing the properties and methods of a DataMatrix object, see the
DataMatrix object reference page.

4 Microarray Analysis

4-6

Constructing DataMatrix Objects

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains
yeast data. This MAT-file includes three variables: yeastvalues, a 614-by-7 matrix
of gene expression data, genes, a cell array of 614 GenBank accession numbers for
labeling the rows in yeastvalues, and times, a 1-by-7 vector of time values for
labeling the columns in yeastvalues.

load filteredyeastdata

2 Create variables to contain a subset of the data, specifically the first five rows and
first four columns of the yeastvalues matrix, the genes cell array, and the times
vector.

yeastvalues = yeastvalues(1:5,1:4);

genes = genes(1:5,:);

times = times(1:4);

3 Import the microarray object package so that the DataMatrix constructor function
will be available.

import bioma.data.*

4 Use the DataMatrix constructor function to create a small DataMatrix object from
the gene expression data in the variables you created in step 2.

dmo = DataMatrix(yeastvalues,genes,times)

dmo =

 0 9.5 11.5 13.5

 SS DNA -0.131 1.699 -0.026 0.365

 YAL003W 0.305 0.146 -0.129 -0.444

 YAL012W 0.157 0.175 0.467 -0.379

 YAL026C 0.246 0.796 0.384 0.981

 YAL034C -0.235 0.487 -0.184 -0.669

Getting and Setting Properties of a DataMatrix Object

You use the get and set methods to retrieve and set properties of a DataMatrix object.

1 Use the get method to display the properties of the DataMatrix object, dmo.

get(dmo)

 Name: ''

 Representing Expression Data Values in DataMatrix Objects

4-7

 RowNames: {5x1 cell}

 ColNames: {' 0' ' 9.5' '11.5' '13.5'}

 NRows: 5

 NCols: 4

 NDims: 2

 ElementClass: 'double'

2 Use the set method to specify a name for the DataMatrix object, dmo.

dmo = set(dmo,'Name','MyDMObject');

3 Use the get method again to display the properties of the DataMatrix object, dmo.

get(dmo)

 Name: 'MyDMObject'

 RowNames: {5x1 cell}

 ColNames: {' 0' ' 9.5' '11.5' '13.5'}

 NRows: 5

 NCols: 4

 NDims: 2

 ElementClass: 'double'

Note: For a description of all properties of a DataMatrix object, see the DataMatrix object
reference page.

Accessing Data in DataMatrix Objects

DataMatrix objects support the following types of indexing to extract, assign, and delete
data:

• Parenthesis () indexing
• Dot . indexing

Parentheses () Indexing

Use parenthesis indexing to extract a subset of the data in dmo and assign it to a new
DataMatrix object dmo2:

dmo2 = dmo(1:5,2:3)

dmo2 =

 9.5 11.5

 SS DNA 1.699 -0.026

4 Microarray Analysis

4-8

 YAL003W 0.146 -0.129

 YAL012W 0.175 0.467

 YAL026C 0.796 0.384

 YAL034C 0.487 -0.184

Use parenthesis indexing to extract a subset of the data using row names and column
names, and assign it to a new DataMatrix object dmo3:

dmo3 = dmo({'SS DNA','YAL012W','YAL034C'},'11.5')

dmo3 =

 11.5

 SS DNA -0.026

 YAL012W 0.467

 YAL034C -0.184

Note: If you use a cell array of row names or column names to index into a DataMatrix
object, the names must be unique, even though the row names or column names within
the DataMatrix object are not unique.

Use parenthesis indexing to assign new data to a subset of the elements in dmo2:

dmo2({'SS DNA', 'YAL003W'}, 1:2) = [1.700 -0.030; 0.150 -0.130]

dmo2 =

 9.5 11.5

 SS DNA 1.7 -0.03

 YAL003W 0.15 -0.13

 YAL012W 0.175 0.467

 YAL026C 0.796 0.384

 YAL034C 0.487 -0.184

Use parenthesis indexing to delete a subset of the data in dmo2:

dmo2({'SS DNA', 'YAL003W'}, :) = []

dmo2 =

 9.5 11.5

 YAL012W 0.175 0.467

 YAL026C 0.796 0.384

 YAL034C 0.487 -0.184

 Representing Expression Data Values in DataMatrix Objects

4-9

Dot . Indexing

Note: In the following examples, notice that when using dot indexing with DataMatrix
objects, you specify all rows or all columns using a colon within single quotation marks,
(':').

Use dot indexing to extract the data from the 11.5 column only of dmo:

timeValues = dmo.(':')('11.5')

timeValues =

 -0.0260

 -0.1290

 0.4670

 0.3840

 -0.1840

Use dot indexing to assign new data to a subset of the elements in dmo:

dmo.(1:2)(':') = 7

dmo =

 0 9.5 11.5 13.5

 SS DNA 7 7 7 7

 YAL003W 7 7 7 7

 YAL012W 0.157 0.175 0.467 -0.379

 YAL026C 0.246 0.796 0.384 0.981

 YAL034C -0.235 0.487 -0.184 -0.669

Use dot indexing to delete an entire variable from dmo:

dmo.YAL034C = []

dmo =

 0 9.5 11.5 13.5

 SS DNA 7 7 7 7

 YAL003W 7 7 7 7

 YAL012W 0.157 0.175 0.467 -0.379

 YAL026C 0.246 0.796 0.384 0.981

Use dot indexing to delete two columns from dmo:

dmo.(':')(2:3)=[]

4 Microarray Analysis

4-10

dmo =

 0 13.5

 SS DNA 7 7

 YAL003W 7 7

 YAL012W 0.157 -0.379

 YAL026C 0.246 0.981

 Representing Expression Data Values in ExptData Objects

4-11

Representing Expression Data Values in ExptData Objects

In this section...

“Overview of ExptData Objects” on page 4-11
“Constructing ExptData Objects” on page 4-11
“Using Properties of an ExptData Object” on page 4-12
“Using Methods of an ExptData Object” on page 4-13
“References” on page 4-14

Overview of ExptData Objects

You can use an ExptData object to store expression values from a microarray experiment.
An ExprData object stores the data values in one or more DataMatrix objects, each
having the same row names (feature names) and column names (sample names). Each
element (DataMatrix object) in the ExptData object has an element name.

The following illustrates a small DataMatrix object containing expression values from
three samples (columns) and seven features (rows):

 A B C

 100001_at 2.26 20.14 31.66

 100002_at 158.86 236.25 206.27

 100003_at 68.11 105.45 82.92

 100004_at 74.32 96.68 84.87

 100005_at 75.05 53.17 57.94

 100006_at 80.36 42.89 77.21

 100007_at 216.64 191.32 219.48

An ExptData object lets you store, manage, and subset the data values from a microarray
experiment. An ExptData object includes properties and methods that let you access,
retrieve, and change data values from a microarray experiment. These properties
and methods are useful to view and analyze the data. For a list of the properties and
methods, see ExptData class.

Constructing ExptData Objects

The mouseExprsData.txt file used in this example contains data from Hovatta et al.,
2005.

4 Microarray Analysis

4-12

1 Import the bioma.data package so that the DataMatrix and ExptData
constructor functions are available.

import bioma.data.*

2 Use the DataMatrix constructor function to create a DataMatrix object from the
gene expression data in the mouseExprsData.txt file. This file contains a table
of expression values and metadata (sample and feature names) from a microarray
experiment done using the Affymetrix MGU74Av2 GeneChip array. There are 26
sample names (A through Z), and 500 feature names (probe set names).

dmObj = DataMatrix('File', 'mouseExprsData.txt');

3 Use the ExptData constructor function to create an ExptData object from the
DataMatrix object.

EDObj = ExptData(dmObj);

4 Display information about the ExptData object, EDObj.

EDObj

Experiment Data:

 500 features, 26 samples

 1 elements

 Element names: Elmt1

Note: For complete information on constructing ExptData objects, see ExptData class.

Using Properties of an ExptData Object

To access properties of an ExptData object, use the following syntax:

objectname.propertyname

For example, to determine the number of elements (DataMatrix objects) in an ExptData
object:

EDObj.NElements

ans =

 1

 Representing Expression Data Values in ExptData Objects

4-13

To set properties of an ExptData object, use the following syntax:

objectname.propertyname = propertyvalue

For example, to set the Name property of an ExptData object:

EDObj.Name = 'MyExptDataObject'

Note: Property names are case sensitive. For a list and description of all properties of an
ExptData object, see ExptData class.

Using Methods of an ExptData Object

To use methods of an ExptData object, use either of the following syntaxes:

objectname.methodname

or

methodname(objectname)

For example, to retrieve the sample names from an ExptData object:

EDObj.sampleNames

Columns 1 through 9

 'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' ...

To return the size of an ExptData object:

size(EDObj)

ans =

 500 26

Note: For a complete list of methods of an ExptData object, see ExptData class.

4 Microarray Analysis

4-14

References

[1] Hovatta, I., Tennant, R S., Helton, R., et al. (2005). Glyoxalase 1 and glutathione
reductase 1 regulate anxiety in mice. Nature 438, 662–666.

 Representing Sample and Feature Metadata in MetaData Objects

4-15

Representing Sample and Feature Metadata in MetaData Objects

In this section...

“Overview of MetaData Objects” on page 4-15
“Constructing MetaData Objects” on page 4-16
“Using Properties of a MetaData Object” on page 4-19
“Using Methods of a MetaData Object” on page 4-19

Overview of MetaData Objects

You can store either sample or feature metadata from a microarray gene expression
experiment in a MetaData object. The metadata consists of variable names, for example,
related to either samples or microarray features, along with descriptions and values for
the variables.

A MetaData object stores the metadata in two dataset arrays:

• Values dataset array — A dataset array containing the measured value of each
variable per sample or feature. In this dataset array, the columns correspond to
variables and rows correspond to either samples or features. The number and names
of the columns in this dataset array must match the number and names of the rows
in the Descriptions dataset array. If this dataset array contains sample metadata,
then the number and names of the rows (samples) must match the number and names
of the columns in the DataMatrix objects in the same ExpressionSet object. If this
dataset array contains feature metadata, then the number and names of the rows
(features) must match the number and names of the rows in the DataMatrix objects
in the same ExpressionSet object.

• Descriptions dataset array — A dataset array containing a list of the variable
names and their descriptions. In this dataset array, each row corresponds
to a variable. The row names are the variable names, and a column, named
VariableDescription, contains a description of the variable. The number and
names of the rows in the Descriptions dataset array must match the number and
names of the columns in the Values dataset array.

The following illustrates a dataset array containing the measured value of each variable
per sample or feature:

 Gender Age Type Strain Source

 A 'Male' 8 'Wild type' '129S6/SvEvTac' 'amygdala'

4 Microarray Analysis

4-16

 B 'Male' 8 'Wild type' '129S6/SvEvTac' 'amygdala'

 C 'Male' 8 'Wild type' '129S6/SvEvTac' 'amygdala'

 D 'Male' 8 'Wild type' 'A/J ' 'amygdala'

 E 'Male' 8 'Wild type' 'A/J ' 'amygdala'

 F 'Male' 8 'Wild type' 'C57BL/6J ' 'amygdala'

The following illustrates a dataset array containing a list of the variable names and their
descriptions:

 VariableDescription

id 'Sample identifier'

Gender 'Gender of the mouse in study'

Age 'The number of weeks since mouse birth'

Type 'Genetic characters'

Strain 'The mouse strain'

Source 'The tissue source for RNA collection'

A MetaData object lets you store, manage, and subset the metadata from a microarray
experiment. A MetaData object includes properties and methods that let you access,
retrieve, and change metadata from a microarray experiment. These properties and
methods are useful to view and analyze the metadata. For a list of the properties and
methods, see MetaData class

Constructing MetaData Objects

Constructing a MetaData Object from Two dataset Arrays

1 Import the bioma.data package so that the MetaData constructor function is
available.

import bioma.data.*

2 Load some sample data, which includes Fisher’s iris data of 5 measurements on a
sample of 150 irises.

load fisheriris

3 Create a dataset array from some of Fisher's iris data. The dataset array will contain
750 measured values, one for each of 150 samples (iris replicates) at five variables
(species, SL, SW, PL, PW). In this dataset array, the rows correspond to samples,
and the columns correspond to variables.

irisValues = dataset({nominal(species),'species'}, ...

 {meas, 'SL', 'SW', 'PL', 'PW'});

 Representing Sample and Feature Metadata in MetaData Objects

4-17

4 Create another dataset array containing a list of the variable names and their
descriptions. This dataset array will contain five rows, each corresponding to the five
variables: species, SL, SW, PL, and PW. The first column will contain the variable
name. The second column will have a column header of VariableDescription and
contain a description of the variable.

% Create 5-by-1 cell array of description text for the variables

varDesc = {'Iris species', 'Sepal Length', 'Sepal Width', ...

 'Petal Length', 'Petal Width'}';

% Create the dataset array from the variable descriptions

irisVarDesc = dataset(varDesc, ...

 'ObsNames', {'species','SL','SW','PL','PW'}, ...

 'VarNames', {'VariableDescription'})

irisVarDesc =

 VariableDescription

 species 'Iris species'

 SL 'Sepal Length'

 SW 'Sepal Width'

 PL 'Petal Length'

 PW 'Petal Width'

5 Create a MetaData object from the two dataset arrays.

MDObj1 = MetaData(irisValues, irisVarDesc);

Constructing a MetaData Object from a Text File

1 Import the bioma.datapackage so that the MetaData constructor function is
available.

import bioma.data.*

2 View the mouseSampleData.txt file included with the Bioinformatics Toolbox
software.

Note that this text file contains two tables. One table contains 130 measured values,
one for each of 26 samples (A through Z) at five variables (Gender, Age, Type,
Strain, and Source). In this table, the rows correspond to samples, and the columns
correspond to variables. The second table has lines prefaced by the # symbol. It
contains five rows, each corresponding to the five variables: Gender, Age, Type,
Strain, and Source. The first column contains the variable name. The second column
has a column header of VariableDescription and contains a description of the
variable.

4 Microarray Analysis

4-18

id: Sample identifier

Gender: Gender of the mouse in study

Age: The number of weeks since mouse birth

Type: Genetic characters

Strain: The mouse strain

Source: The tissue source for RNA collection

ID Gender Age Type Strain Source

A Male 8 Wild type 129S6/SvEvTac amygdala

B Male 8 Wild type 129S6/SvEvTac amygdala

C Male 8 Wild type 129S6/SvEvTac amygdala

D Male 8 Wild type A/J amygdala

E Male 8 Wild type A/J amygdala

F Male 8 Wild type C57BL/6J amygdala

G Male 8 Wild type C57BL/6J amygdala

H Male 8 Wild type 129S6/SvEvTac cingulate cortex

I Male 8 Wild type 129S6/SvEvTac cingulate cortex

J Male 8 Wild type A/J cingulate cortex

K Male 8 Wild type A/J cingulate cortex

L Male 8 Wild type A/J cingulate cortex

M Male 8 Wild type C57BL/6J cingulate cortex

N Male 8 Wild type C57BL/6J cingulate cortex

O Male 8 Wild type 129S6/SvEvTac hippocampus

P Male 8 Wild type 129S6/SvEvTac hippocampus

Q Male 8 Wild type A/J hippocampus

R Male 8 Wild type A/J hippocampus

S Male 8 Wild type C57BL/6J hippocampus

T Male 8 Wild type C57BL/6J4 hippocampus

U Male 8 Wild type 129S6/SvEvTac hypothalamus

V Male 8 Wild type 129S6/SvEvTac hypothalamus

W Male 8 Wild type A/J hypothalamus

X Male 8 Wild type A/J hypothalamus

Y Male 8 Wild type C57BL/6J hypothalamus

Z Male 8 Wild type C57BL/6J hypothalamus

3 Create a MetaData object from the metadata in the mouseSampleData.txt file.

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#')

Sample Names:

 A, B, ...,Z (26 total)

Variable Names and Meta Information:

 VariableDescription

 Gender ' Gender of the mouse in study'

 Age ' The number of weeks since mouse birth'

 Type ' Genetic characters'

 Representing Sample and Feature Metadata in MetaData Objects

4-19

 Strain ' The mouse strain'

 Source ' The tissue source for RNA collection'

For complete information on constructing MetaData objects, see MetaData class.

Using Properties of a MetaData Object

To access properties of a MetaData object, use the following syntax:

objectname.propertyname

For example, to determine the number of variables in a MetaData object:

MDObj2.NVariables

ans =

 5

To set properties of a MetaData object, use the following syntax:

objectname.propertyname = propertyvalue

For example, to set the Description property of a MetaData object:

MDObj1.Description = 'This is my MetaData object for my sample metadata'

Note: Property names are case sensitive. For a list and description of all properties of a
MetaData object, see MetaData class.

Using Methods of a MetaData Object

To use methods of a MetaData object, use either of the following syntaxes:

objectname.methodname

or

methodname(objectname)

For example, to access the dataset array in a MetaData object that contains the variable
values:

4 Microarray Analysis

4-20

MDObj2.variableValues;

To access the dataset array of a MetaData object that contains the variable descriptions:

variableDesc(MDObj2)

ans =

 VariableDescription

 Gender ' Gender of the mouse in study'

 Age ' The number of weeks since mouse birth'

 Type ' Genetic characters'

 Strain ' The mouse strain'

 Source ' The tissue source for RNA collection'

Note: For a complete list of methods of a MetaData object, see MetaData class.

 Representing Experiment Information in a MIAME Object

4-21

Representing Experiment Information in a MIAME Object

In this section...

“Overview of MIAME Objects” on page 4-21
“Constructing MIAME Objects” on page 4-21
“Using Properties of a MIAME Object” on page 4-23
“Using Methods of a MIAME Object” on page 4-24

Overview of MIAME Objects

You can store information about experimental methods and conditions from a microarray
gene expression experiment in a MIAME object. It loosely follows the Minimum
Information About a Microarray Experiment (MIAME) specification. It can include
information about:

• Experiment design
• Microarrays used
• Samples used
• Sample preparation and labeling
• Hybridization procedures and parameters
• Normalization controls
• Preprocessing information
• Data processing specifications

A MIAME object includes properties and methods that let you access, retrieve, and
change experiment information related to a microarray experiment. These properties and
methods are useful to view and analyze the information. For a list of the properties and
methods, see MIAME class.

Constructing MIAME Objects

For complete information on constructing MIAME objects, see MIAME class.

Constructing a MIAME Object from a GEO Structure

1 Import the bioma.data package so that the MIAME constructor function is available.

4 Microarray Analysis

4-22

import bioma.data.*

2 Use the getgeodata function to return a MATLAB structure containing Gene
Expression Omnibus (GEO) Series data related to accession number GSE4616.

geoStruct = getgeodata('GSE4616')

geoStruct =

 Header: [1x1 struct]

 Data: [12488x12 bioma.data.DataMatrix]

3 Use the MIAME constructor function to create a MIAME object from the structure.

MIAMEObj1 = MIAME(geoStruct);

4 Display information about the MIAME object, MIAMEObj.
MIAMEObj1

MIAMEObj1 =

Experiment Description:

 Author name: Mika,,Silvennoinen

Riikka,,KivelÃ¤

Maarit,,Lehti

Anna-Maria,,Touvras

Jyrki,,Komulainen

Veikko,,Vihko

Heikki,,Kainulainen

 Laboratory: LIKES - Research Center

 Contact information: Mika,,Silvennoinen

 URL:

 PubMedIDs: 17003243

 Abstract: A 90 word abstract is available. Use the Abstract property.

 Experiment Design: A 234 word summary is available. Use the ExptDesign property.

 Other notes:

 [1x80 char]

Constructing a MIAME Object from Properties

1 Import the bioma.data package so that theMIAME constructor function is available.

import bioma.data.*

2 Use the MIAME constructor function to create a MIAME object using individual
properties.
MIAMEObj2 = MIAME('investigator', 'Jane Researcher',...

 'lab', 'One Bioinformatics Laboratory',...

 'contact', 'jresearcher@lab.not.exist',...

 Representing Experiment Information in a MIAME Object

4-23

 'url', 'www.lab.not.exist',...

 'title', 'Normal vs. Diseased Experiment',...

 'abstract', 'Example of using expression data',...

 'other', {'Notes:Created from a text file.'});

3 Display information about the MIAME object, MIAMEObj2.
MIAMEObj2

MIAMEObj2 =

Experiment Description:

 Author name: Jane Researcher

 Laboratory: One Bioinformatics Laboratory

 Contact information: jresearcher@lab.not.exist

 URL: www.lab.not.exist

 PubMedIDs:

 Abstract: A 4 word abstract is available. Use the Abstract property.

 No experiment design summary available.

 Other notes:

 'Notes:Created from a text file.'

Using Properties of a MIAME Object

To access properties of a MIAME object, use the following syntax:

objectname.propertyname

For example, to retrieve the PubMed identifier of publications related to a MIAME
object:

MIAMEObj1.PubMedID

ans =

17003243

To set properties of a MIAME object, use the following syntax:

objectname.propertyname = propertyvalue

For example, to set the Laboratory property of a MIAME object:

MIAMEObj1.Laboratory = 'XYZ Lab'

Note: Property names are case sensitive. For a list and description of all properties of a
MIAME object, see MIAME class.

4 Microarray Analysis

4-24

Using Methods of a MIAME Object

To use methods of a MIAME object, use either of the following syntaxes:

objectname.methodname

or

methodname(objectname)

For example, to determine if a MIAME object is empty:

MIAMEObj1.isempty

ans =

 0

Note: For a complete list of methods of a MIAME object, see MIAME class.

 Representing All Data in an ExpressionSet Object

4-25

Representing All Data in an ExpressionSet Object

In this section...

“Overview of ExpressionSet Objects” on page 4-25
“Constructing ExpressionSet Objects” on page 4-27
“Using Properties of an ExpressionSet Object” on page 4-28
“Using Methods of an ExpressionSet Object” on page 4-28

Overview of ExpressionSet Objects

You can store all microarray experiment data and information in one object by
assembling the following into an ExpressionSet object:

• One ExptData object containing expression values from a microarray experiment in
one or more DataMatrix objects

• One MetaData object containing sample metadata in two dataset arrays
• One MetaData object containing feature metadata in two dataset arrays
• One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its component
objects.

4 Microarray Analysis

4-26

Each element (DataMatrix object) in the ExpressionSet object has an element name.
Also, there is always one DataMatrix object whose element name is Expressions.

 Representing All Data in an ExpressionSet Object

4-27

An ExpressionSet object lets you store, manage, and subset the data from a microarray
gene expression experiment. An ExpressionSet object includes properties and methods
that let you access, retrieve, and change data, metadata, and other information about the
microarray experiment. These properties and methods are useful to view and analyze the
data. For a list of the properties and methods, see ExpressionSet class.

Constructing ExpressionSet Objects

Note: The following procedure assumes you have executed the example code in the
previous sections:

• “Representing Expression Data Values in ExptData Objects” on page 4-11

• “Representing Sample and Feature Metadata in MetaData Objects” on page 4-15
• “Representing Experiment Information in a MIAME Object” on page 4-21

1 Import the bioma package so that the ExpresssionSet constructor function is
available.

import bioma.*

2 Construct an ExpressionSet object from EDObj, an ExptData object, MDObj2, a
MetaData object containing sample variable information, and MIAMEObj, a MIAME
object.

ESObj = ExpressionSet(EDObj, 'SData', MDObj2, 'EInfo', MIAMEObj1);

3 Display information about the ExpressionSet object, ESObj.

ESObj

ExpressionSet

Experiment Data: 500 features, 26 samples

 Element names: Expressions

Sample Data:

 Sample names: A, B, ...,Z (26 total)

 Sample variable names and meta information:

 Gender: Gender of the mouse in study

 Age: The number of weeks since mouse birth

 Type: Genetic characters

 Strain: The mouse strain

4 Microarray Analysis

4-28

 Source: The tissue source for RNA collection

Feature Data: none

Experiment Information: use 'exptInfo(obj)'

For complete information on constructing ExpressionSet objects, see ExpressionSet class.

Using Properties of an ExpressionSet Object

To access properties of an ExpressionSet object, use the following syntax:

objectname.propertyname

For example, to determine the number of samples in an ExpressionSet object:

ESObj.NSamples

ans =

 26

Note: Property names are case sensitive. For a list and description of all properties of an
ExpressionSet object, see ExpressionSet class.

Using Methods of an ExpressionSet Object

To use methods of an ExpressionSet object, use either of the following syntaxes:

objectname.methodname

or

methodname(objectname)

For example, to retrieve the sample variable names from an ExpressionSet object:

ESObj.sampleVarNames

ans =

 'Gender' 'Age' 'Type' 'Strain' 'Source'

To retrieve the experiment information contained in an ExpressionSet object:

 Representing All Data in an ExpressionSet Object

4-29

exptInfo(ESObj)

ans =

Experiment description

 Author name: Mika,,Silvennoinen

Riikka,,KivelÃ¤

Maarit,,Lehti

Anna-Maria,,Touvras

Jyrki,,Komulainen

Veikko,,Vihko

Heikki,,Kainulainen

 Laboratory: XYZ Lab

 Contact information: Mika,,Silvennoinen

 URL:

 PubMedIDs: 17003243

 Abstract: A 90 word abstract is available Use the Abstract property.

 Experiment Design: A 234 word summary is available Use the ExptDesign property.

 Other notes:

 [1x80 char]

Note: For a complete list of methods of an ExpressionSet object, see ExpressionSet class.

4 Microarray Analysis

4-30

Visualizing Microarray Images

In this section...

“Overview of the Mouse Example” on page 4-30
“Exploring the Microarray Data Set” on page 4-31
“Spatial Images of Microarray Data” on page 4-33
“Statistics of the Microarrays” on page 4-37
“Scatter Plots of Microarray Data” on page 4-39

Overview of the Mouse Example

This example looks at the various ways to visualize microarray data. The data comes
from a pharmacological model of Parkinson's disease (PD) using a mouse brain. The
microarray data for this example is from Brown, V.M., Ossadtchi, A., Khan, A.H., Yee,
S., Lacan, G., Melega, W.P., Cherry, S.R., Leahy, R.M., and Smith, D.J.; "Multiplex three
dimensional brain gene expression mapping in a mouse model of Parkinson's disease";
Genome Research 12(6): 868-884 (2002).

The microarray data used in this example is available in a Web supplement to the paper
by Brown et al. and in the file mouse_a1pd.gpr included with the Bioinformatics
Toolbox software.

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/

The microarray data is also available on the Gene Expression Omnibus Web site at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

The GenePix GPR-formatted file mouse_a1pd.gpr contains the data for one of the
microarrays used in the study. This is data from voxel A1 of the brain of a mouse
in which a pharmacological model of Parkinson's disease (PD) was induced using
methamphetamine. The voxel sample was labeled with Cy3 (green) and the control,
RNA from a total (not voxelated) normal mouse brain, was labeled with Cy5 (red). GPR
formatted files provide a large amount of information about the array, including the
mean, median, and standard deviation of the foreground and background intensities of
each spot at the 635 nm wavelength (the red, Cy5 channel) and the 532 nm wavelength
(the green, Cy3 channel).

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

 Visualizing Microarray Images

4-31

Exploring the Microarray Data Set

This procedure illustrates how to import data from the Web into the MATLAB
environment, using data from a study about gene expression in mouse brains as an
example. See “Overview of the Mouse Example” on page 4-30.

1 Read data from a file into a MATLAB structure. For example, in the MATLAB
Command Window, type

pd = gprread('mouse_a1pd.gpr')

Information about the structure displays in the MATLAB Command Window:

pd =

 Header: [1x1 struct]

 Data: [9504x38 double]

 Blocks: [9504x1 double]

 Columns: [9504x1 double]

 Rows: [9504x1 double]

 Names: {9504x1 cell}

 IDs: {9504x1 cell}

 ColumnNames: {38x1 cell}

 Indices: [132x72 double]

 Shape: [1x1 struct]

2 Access the fields of a structure using StructureName.FieldName. For example,
you can access the field ColumnNames of the structure pd by typing

pd.ColumnNames

The column names are shown below.

ans =

 'X'

 'Y'

 'Dia.'

 'F635 Median'

 'F635 Mean'

 'F635 SD'

 'B635 Median'

 'B635 Mean'

 'B635 SD'

 '% > B635+1SD'

 '% > B635+2SD'

 'F635 % Sat.'

4 Microarray Analysis

4-32

 'F532 Median'

 'F532 Mean'

 'F532 SD'

 'B532 Median'

 'B532 Mean'

 'B532 SD'

 '% > B532+1SD'

 '% > B532+2SD'

 'F532 % Sat.'

 'Ratio of Medians'

 'Ratio of Means'

 'Median of Ratios'

 'Mean of Ratios'

 'Ratios SD'

 'Rgn Ratio'

 'Rgn R²'

 'F Pixels'

 'B Pixels'

 'Sum of Medians'

 'Sum of Means'

 'Log Ratio'

 'F635 Median - B635'

 'F532 Median - B532'

 'F635 Mean - B635'

 'F532 Mean - B532'

 'Flags'

3 Access the names of the genes. For example, to list the first 20 gene names, type

pd.Names(1:20)

A list of the first 20 gene names is displayed:

ans =

 'AA467053'

 'AA388323'

 'AA387625'

 'AA474342'

 'Myo1b'

 'AA473123'

 'AA387579'

 'AA387314'

 'AA467571'

 ''

 'Spop'

 Visualizing Microarray Images

4-33

 'AA547022'

 'AI508784'

 'AA413555'

 'AA414733'

 ''

 'Snta1'

 'AI414419'

 'W14393'

 'W10596'

Spatial Images of Microarray Data

This procedure illustrates how to visualize microarray data by plotting image maps.
The function maimage can take a microarray data structure and create a pseudocolor
image of the data arranged in the same order as the spots on the array. In other words,
maimage plots a spatial plot of the microarray.

This procedure uses data from a study of gene expression in mouse brains. For a list of
field names in the MATLAB structure pd, see “Exploring the Microarray Data Set” on
page 4-31.

1 Plot the median values for the red channel. For example, to plot data from the field
F635 Median, type

figure

maimage(pd,'F635 Median')

The MATLAB software plots an image showing the median pixel values for the
foreground of the red (Cy5) channel.

4 Microarray Analysis

4-34

2 Plot the median values for the green channel. For example, to plot data from the
field F532 Median, type

figure

maimage(pd,'F532 Median')

3 Plot the median values for the red background. The field B635 Median shows the
median values for the background of the red channel.

figure

maimage(pd,'B635 Median')

4 Plot the medial values for the green background. The field B532 Median shows the
median values for the background of the green channel.

figure

maimage(pd,'B532 Median')

 Visualizing Microarray Images

4-35

5 The first array was for the Parkinson's disease model mouse. Now read in the data
for the same brain voxel but for the untreated control mouse. In this case, the voxel
sample was labeled with Cy3 and the control, total brain (not voxelated), was labeled
with Cy5.

wt = gprread('mouse_a1wt.gpr')

The MATLAB software creates a structure and displays information about the
structure.

6 Use the function maimage to show pseudocolor images of the foreground and
background. You can use the function subplot to put all the plots onto one figure.

figure

subplot(2,2,1);

maimage(wt,'F635 Median')

subplot(2,2,2);

maimage(wt,'F532 Median')

subplot(2,2,3);

maimage(wt,'B635 Median')

subplot(2,2,4);

maimage(wt,'B532 Median')

7 If you look at the scale for the background images, you will notice that the
background levels are much higher than those for the PD mouse and there appears
to be something nonrandom affecting the background of the Cy3 channel of this
slide. Changing the colormap can sometimes provide more insight into what is going
on in pseudocolor plots. For more control over the color, try the colormapeditor
function.

colormap hot

8 The function maimage is a simple way to quickly create pseudocolor images of
microarray data. However if you want more control over plotting, it is easy to create
your own plots using the function imagesc.

First find the column number for the field of interest.

b532MedCol = find(strcmp(wt.ColumnNames,'B532 Median'))

The MATLAB software displays:

b532MedCol =

 16

9 Extract that column from the field Data.

4 Microarray Analysis

4-36

b532Data = wt.Data(:,b532MedCol);

10 Use the field Indices to index into the Data.

figure

subplot(1,2,1);

imagesc(b532Data(wt.Indices))

axis image

colorbar

title('B532 Median')

The MATLAB software plots the image.

11 Bound the intensities of the background plot to give more contrast in the image.

maskedData = b532Data;

maskedData(b532Data<500) = 500;

maskedData(b532Data>2000) = 2000;

 Visualizing Microarray Images

4-37

subplot(1,2,2);

imagesc(maskedData(wt.Indices))

axis image

colorbar

title('Enhanced B532 Median')

The MATLAB software plots the images.

Statistics of the Microarrays

This procedure illustrates how to visualize distributions in microarray data. You can use
the function maboxplot to look at the distribution of data in each of the blocks.

1 In the MATLAB Command Window, type
figure

subplot(2,1,1)

maboxplot(pd,'F532 Median','title','Parkinson''s Disease Model Mouse')

subplot(2,1,2)

maboxplot(pd,'B532 Median','title','Parkinson''s Disease Model Mouse')

figure

subplot(2,1,1)

4 Microarray Analysis

4-38

maboxplot(wt,'F532 Median','title','Untreated Mouse')

subplot(2,1,2)

maboxplot(wt,'B532 Median','title','Untreated Mouse')

The MATLAB software plots the images.

 Visualizing Microarray Images

4-39

2 Compare the plots.

From the box plots you can clearly see the spatial effects in the background
intensities. Blocks numbers 1, 3, 5, and 7 are on the left side of the arrays, and
numbers 2, 4, 6, and 8 are on the right side. The data must be normalized to remove
this spatial bias.

Scatter Plots of Microarray Data

This procedure illustrates how to visualize expression levels in microarray data. There
are two columns in the microarray data structure labeled 'F635 Median - B635'
and 'F532 Median - B532'. These columns are the differences between the median
foreground and the median background for the 635 nm channel and 532 nm channel
respectively. These give a measure of the actual expression levels, although since the
data must first be normalized to remove spatial bias in the background, you should
be careful about using these values without further normalization. However, in this
example no normalization is performed.

4 Microarray Analysis

4-40

1 Rather than working with data in a larger structure, it is often easier to extract the
column numbers and data into separate variables.

cy5DataCol = find(strcmp(wt.ColumnNames,'F635 Median - B635'))

cy3DataCol = find(strcmp(wt.ColumnNames,'F532 Median - B532'))

cy5Data = pd.Data(:,cy5DataCol);

cy3Data = pd.Data(:,cy3DataCol);

The MATLAB software displays:

cy5DataCol =

 34

cy3DataCol =

 35

2 A simple way to compare the two channels is with a loglog plot. The function
maloglog is used to do this. Points that are above the diagonal in this plot
correspond to genes that have higher expression levels in the A1 voxel than in the
brain as a whole.

figure

maloglog(cy5Data,cy3Data)

xlabel('F635 Median - B635 (Control)');

ylabel('F532 Median - B532 (Voxel A1)');

The MATLAB software displays the following messages and plots the images.

Warning: Zero values are ignored

(Type "warning off Bioinfo:MaloglogZeroValues" to suppress

 this warning.)

Warning: Negative values are ignored.

(Type "warning off Bioinfo:MaloglogNegativeValues" to suppress

 this warning.)

 Visualizing Microarray Images

4-41

Notice that this function gives some warnings about negative and zero elements.
This is because some of the values in the 'F635 Median - B635' and 'F532
Median - B532' columns are zero or even less than zero. Spots where this
happened might be bad spots or spots that failed to hybridize. Points with positive,
but very small, differences between foreground and background should also be
considered to be bad spots.

3 Disable the display of warnings by using the warning command. Although warnings
can be distracting, it is good practice to investigate why the warnings occurred
rather than simply to ignore them. There might be some systematic reason why they
are bad.

warnState = warning; % First save the current warning

 state.

 % Now turn off the two warnings.

warning('off','Bioinfo:MaloglogZeroValues');

warning('off','Bioinfo:MaloglogNegativeValues');

4 Microarray Analysis

4-42

figure

maloglog(cy5Data,cy3Data) % Create the loglog plot

warning(warnState); % Reset the warning state.

xlabel('F635 Median - B635 (Control)');

ylabel('F532 Median - B532 (Voxel A1)');

The MATLAB software plots the image.

4 An alternative to simply ignoring or disabling the warnings is to remove the bad
spots from the data set. You can do this by finding points where either the red or
green channel has values less than or equal to a threshold value. For example, use a
threshold value of 10.

threshold = 10;

badPoints = (cy5Data <= threshold) | (cy3Data <= threshold);

5 You can then remove these points and redraw the loglog plot.

cy5Data(badPoints) = []; cy3Data(badPoints) = [];

figure

 Visualizing Microarray Images

4-43

maloglog(cy5Data,cy3Data)

xlabel('F635 Median - B635 (Control)');

ylabel('F532 Median - B532 (Voxel A1)');

6 Add gene labels to the plot. Because some of the data points have been removed, the
corresponding gene IDs must also be removed from the data set before you can use
them. The simplest way to do that is wt.IDs(~badPoints).

maloglog(cy5Data,cy3Data,'labels',wt.IDs(~badPoints),...

 'factorlines',2)

xlabel('F635 Median - B635 (Control)');

ylabel('F532 Median - B532 (Voxel A1)');

7 Try using the mouse to click some of the outlier points.

You will see the gene ID associated with the point. Most of the outliers are below the
y = x line. In fact, most of the points are below this line. Ideally the points should
be evenly distributed on either side of this line.

8 Normalize the points to evenly distribute them on either side of the line. Use the
function manorm to perform global mean normalization.

normcy5 = mannorm(cy5Data);

normcy3 = manorm(cy3Data);

If you plot the normalized data you will see that the points are more evenly
distributed about the y = x line.

figure

maloglog(normcy5,normcy3,'labels',wt.IDs(~badPoints),...

 'factorlines',2)

xlabel('F635 Median - B635 (Control)');

ylabel('F532 Median - B532 (Voxel A1)');

The MATLAB software plots the image.

4 Microarray Analysis

4-44

9 The function mairplot is used to create an Intensity vs. Ratio plot for the
normalized data. This function works in the same way as the function maloglog.

figure

mairplot(normcy5,normcy3,'labels',wt.IDs(~badPoints),...

 'factorlines',2)

10 You can click the points in this plot to see the name of the gene associated with the
plot.

 Analyzing Gene Expression Profiles

4-45

Analyzing Gene Expression Profiles

In this section...

“Overview of the Yeast Example” on page 4-45
“Exploring the Data Set” on page 4-45
“Filtering Genes” on page 4-49
“Clustering Genes” on page 4-51
“Principal Component Analysis” on page 4-56

Overview of the Yeast Example

This example demonstrates a number of ways to look for patterns in gene expression
profiles, using gene expression data from yeast shifting from fermentation to respiration.

The microarray data for this example is from DeRisi, J.L., Iyer, V.R., and Brown, P.O.
(Oct 24, 1997). Exploring the metabolic and genetic control of gene expression on a
genomic scale. Science, 278 (5338), 680–686. PMID: 9381177.

The authors used DNA microarrays to study temporal gene expression of almost all
genes in Saccharomyces cerevisiae during the metabolic shift from fermentation to
respiration. Expression levels were measured at seven time points during the diauxic
shift. The full data set can be downloaded from the Gene Expression Omnibus Web site
at:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

Exploring the Data Set

This procedure illustrates how to import data from the Web into the MATLAB
environment. The data for this procedure is available in the MAT-file yeastdata.mat.
This file contains the VALUE data or LOG_RAT2N_MEAN, or log2 of ratio of
CH2DN_MEAN and CH1DN_MEAN from the seven time steps in the experiment,
the names of the genes, and an array of the times at which the expression levels were
measured.

1 Load data into the MATLAB environment.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

4 Microarray Analysis

4-46

load yeastdata.mat

2 Get the size of the data by typing

numel(genes)

The number of genes in the data set displays in the MATLAB Command Window.
The MATLAB variable genes is a cell array of the gene names.

ans =

 6400

3 Access the entries using cell array indexing.

genes{15}

This displays the 15th row of the variable yeastvalues, which contains expression
levels for the open reading frame (ORF) YAL054C.

ans =

 YAL054C

4 Use the function web to access information about this ORF in the Saccharomyces
Genome Database (SGD).

url = sprintf(...

 'http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=%s',...

 genes{15});

web(url);

5 A simple plot can be used to show the expression profile for this ORF.

plot(times, yeastvalues(15,:))

xlabel('Time (Hours)');

ylabel('Log2 Relative Expression Level');

The MATLAB software plots the figure. The values are log2 ratios.

 Analyzing Gene Expression Profiles

4-47

6 Plot the actual values.

plot(times, 2.^yeastvalues(15,:))

xlabel('Time (Hours)');

ylabel('Relative Expression Level');

The MATLAB software plots the figure. The gene associated with this ORF, ACS1,
appears to be strongly up-regulated during the diauxic shift.

4 Microarray Analysis

4-48

7 Compare other genes by plotting multiple lines on the same figure.

hold on

plot(times, 2.^yeastvalues(16:26,:)')

xlabel('Time (Hours)');

ylabel('Relative Expression Level');

title('Profile Expression Levels');

The MATLAB software plots the image.

 Analyzing Gene Expression Profiles

4-49

Filtering Genes

This procedure illustrates how to filter the data by removing genes that are not
expressed or do not change. The data set is quite large and a lot of the information
corresponds to genes that do not show any interesting changes during the experiment. To
make it easier to find the interesting genes, reduce the size of the data set by removing
genes with expression profiles that do not show anything of interest. There are 6400
expression profiles. You can use a number of techniques to reduce the number of
expression profiles to some subset that contains the most significant genes.

1 If you look through the gene list you will see several spots marked as 'EMPTY'.
These are empty spots on the array, and while they might have data associated with
them, for the purposes of this example, you can consider these points to be noise.
These points can be found using the strcmp function and removed from the data set
with indexing commands.

4 Microarray Analysis

4-50

emptySpots = strcmp('EMPTY',genes);

yeastvalues(emptySpots,:) = [];

genes(emptySpots) = [];

numel(genes)

The MATLAB software displays:

ans =

 6314

In the yeastvalues data you will also see several places where the expression
level is marked as NaN. This indicates that no data was collected for this spot at the
particular time step. One approach to dealing with these missing values would be
to impute them using the mean or median of data for the particular gene over time.
This example uses a less rigorous approach of simply throwing away the data for any
genes where one or more expression levels were not measured.

2 Use the isnan function to identify the genes with missing data and then use
indexing commands to remove the genes.

nanIndices = any(isnan(yeastvalues),2);

yeastvalues(nanIndices,:) = [];

genes(nanIndices) = [];

numel(genes)

The MATLAB software displays:

ans =

 6276

If you were to plot the expression profiles of all the remaining profiles, you would see
that most profiles are flat and not significantly different from the others. This flat
data is obviously of use as it indicates that the genes associated with these profiles
are not significantly affected by the diauxic shift. However, in this example, you are
interested in the genes with large changes in expression accompanying the diauxic
shift. You can use filtering functions in the toolbox to remove genes with various
types of profiles that do not provide useful information about genes affected by the
metabolic change.

3 Use the function genevarfilter to filter out genes with small variance over time.
The function returns a logical array of the same size as the variable genes with
ones corresponding to rows of yeastvalues with variance greater than the 10th
percentile and zeros corresponding to those below the threshold.

 Analyzing Gene Expression Profiles

4-51

mask = genevarfilter(yeastvalues);

% Use the mask as an index into the values to remove the

% filtered genes.

yeastvalues = yeastvalues(mask,:);

genes = genes(mask);

numel(genes)

The MATLAB software displays:

ans =

 5648

4 The function genelowvalfilter removes genes that have very low absolute
expression values. Note that the gene filter functions can also automatically
calculate the filtered data and names.

[mask, yeastvalues, genes] = genelowvalfilter(yeastvalues,genes,...

 'absval',log2(4));

numel(genes)

The MATLAB software displays:

ans =

 423

5 Use the function geneentropyfilter to remove genes whose profiles have low
entropy:

[mask, yeastvalues, genes] = geneentropyfilter(yeastvalues,genes,...

 'prctile',15);

numel(genes)

The MATLAB software displays:

ans = 310

Clustering Genes

Now that you have a manageable list of genes, you can look for relationships between
the profiles using some different clustering techniques from the Statistics and Machine
Learning Toolbox software.

1 For hierarchical clustering, the function pdist calculates the pairwise distances
between profiles, and the function linkage creates the hierarchical cluster tree.

4 Microarray Analysis

4-52

corrDist = pdist(yeastvalues, 'corr');

clusterTree = linkage(corrDist, 'average');

2 The function cluster calculates the clusters based on either a cutoff distance or
a maximum number of clusters. In this case, the 'maxclust' option is used to
identify 16 distinct clusters.

clusters = cluster(clusterTree, 'maxclust', 16);

3 The profiles of the genes in these clusters can be plotted together using a simple loop
and the function subplot.

figure

for c = 1:16

 subplot(4,4,c);

 plot(times,yeastvalues((clusters == c),:)');

 axis tight

end

suptitle('Hierarchical Clustering of Profiles');

The MATLAB software plots the images.

 Analyzing Gene Expression Profiles

4-53

4 The Statistics and Machine Learning Toolbox software also has a K-means
clustering function. Again, 16 clusters are found, but because the algorithm is
different these are not necessarily the same clusters as those found by hierarchical
clustering.

[cidx, ctrs] = kmeans(yeastvalues, 16,...

 'dist','corr',...

 'rep',5,...

 'disp','final');

figure

for c = 1:16

 subplot(4,4,c);

 plot(times,yeastvalues((cidx == c),:)');

 axis tight

end

suptitle('K-Means Clustering of Profiles');

The MATLAB software displays:

4 Microarray Analysis

4-54

13 iterations, total sum of distances = 11.4042

14 iterations, total sum of distances = 8.62674

26 iterations, total sum of distances = 8.86066

22 iterations, total sum of distances = 9.77676

26 iterations, total sum of distances = 9.01035

5 Instead of plotting all of the profiles, you can plot just the centroids.

figure

for c = 1:16

 subplot(4,4,c);

 plot(times,ctrs(c,:)');

 axis tight

 axis off % turn off the axis

end

suptitle('K-Means Clustering of Profiles');

The MATLAB software plots the figure:

 Analyzing Gene Expression Profiles

4-55

6 You can use the function clustergram to create a heat map and dendrogram from
the output of the hierarchical clustering.

figure

clustergram(yeastvalues(:,2:end),'RowLabels',genes,...

 'ColumnLabels',times(2:end))

The MATLAB software plots the figure:

4 Microarray Analysis

4-56

Principal Component Analysis

Principal-component analysis (PCA) is a useful technique you can use to reduce the
dimensionality of large data sets, such as those from microarray analysis. You can also
use PCA to find signals in noisy data.

1 Use the pca function in the Statistics and Machine Learning Toolbox software to
calculate the principal components of a data set.

[pc, zscores, pcvars] = pca(yeastvalues)

The MATLAB software displays:

pc =

 Columns 1 through 4

 -0.0245 -0.3033 -0.1710 -0.2831

 Analyzing Gene Expression Profiles

4-57

 0.0186 -0.5309 -0.3843 -0.5419

 0.0713 -0.1970 0.2493 0.4042

 0.2254 -0.2941 0.1667 0.1705

 0.2950 -0.6422 0.1415 0.3358

 0.6596 0.1788 0.5155 -0.5032

 0.6490 0.2377 -0.6689 0.2601

 Columns 5 through 7

 -0.1155 0.4034 0.7887

 -0.2384 -0.2903 -0.3679

 -0.7452 -0.3657 0.2035

 -0.2385 0.7520 -0.4283

 0.5592 -0.2110 0.1032

 -0.0194 -0.0961 0.0667

 -0.0673 -0.0039 0.0521

2 You can use the function cumsum to see the cumulative sum of the variances.

cumsum(pcvars./sum(pcvars) * 100)

The MATLAB software displays:

ans =

 78.3719

 89.2140

 93.4357

 96.0831

 98.3283

 99.3203

 100.0000

This shows that almost 90% of the variance is accounted for by the first two principal
components.

3 A scatter plot of the scores of the first two principal components shows that there are
two distinct regions. This is not unexpected, because the filtering process removed
many of the genes with low variance or low information. These genes would have
appeared in the middle of the scatter plot.

figure

scatter(zscores(:,1),zscores(:,2));

xlabel('First Principal Component');

ylabel('Second Principal Component');

title('Principal Component Scatter Plot');

4 Microarray Analysis

4-58

The MATLAB software plots the figure:

4 The gname function from the Statistics and Machine Learning Toolbox software can
be used to identify genes on a scatter plot. You can select as many points as you like
on the scatter plot.

gname(genes);

When you have finished selecting points, press Enter.
5 An alternative way to create a scatter plot is with the gscatter function from the

Statistics and Machine Learning Toolbox software. gscatter creates a grouped
scatter plot where points from each group have a different color or marker. You can
use clusterdata, or any other clustering function, to group the points.

figure

pcclusters = clusterdata(zscores(:,1:2),6);

gscatter(zscores(:,1),zscores(:,2),pcclusters)

xlabel('First Principal Component');

ylabel('Second Principal Component');

title('Principal Component Scatter Plot with Colored Clusters');

gname(genes) % Press enter when you finish selecting genes.

 Analyzing Gene Expression Profiles

4-59

The MATLAB software plots the figure:

4 Microarray Analysis

4-60

Detecting DNA Copy Number Alteration in Array-Based CGH Data

This example shows how to detect DNA copy number alterations in genome-wide array-
based comparative genomic hybridization (CGH) data.

Introduction

Copy number changes or alterations is a form of genetic variation in the human genome
[1]. DNA copy number alterations (CNAs) have been linked to the development and
progression of cancer and many diseases.

DNA microarray based comparative genomic hybridization (CGH) is a technique allows
simultaneous monitoring of copy number of thousands of genes throughout the genome
[2,3]. In this technique, DNA fragments or "clones" from a test sample and a reference
sample differentially labeled with dyes (typically, Cy3 and Cy5) are hybridized to
mapped DNA microarrays and imaged. Copy number alterations are related to the
Cy3 and Cy5 fluorescence intensity ratio of the targets hybridized to each probe on a
microarray. Clones with normalized test intensities significantly greater than reference
intensities indicate copy number gains in the test sample at those positions. Similarly,
significantly lower intensities in the test sample are signs of copy number loss. BAC
(bacterial artificial chromosome) clone based CGH arrays have a resolution in the order
of one million base pairs (1Mb) [3]. Oligonucleotide and cDNA arrays provide a higher
resolution of 50-100kb [2].

Array CGH log2-based intensity ratios provide useful information about genome-wide
CNAs. In humans, the normal DNA copy number is two for all the autosomes. In an ideal
situation, the normal clones would correspond to a log2 ratio of zero. The log2 intensity
ratios of a single copy loss would be -1, and a single copy gain would be 0.58. The goal is
to effectively identify locations of gains or losses of DNA copy number.

The data in this example is the Coriell cell line BAC array CGH data analyzed by
Snijders et al.(2001). The Coriell cell line data is widely regarded as a "gold standard"
data set. You can download this data of normalized log2-based intensity ratios and the
supplemental table of known karyotypes from http://www.nature.com/ng/journal/v29/
n3/suppinfo/ng754_S1.html. You will compare these cytogenically mapped alterations
with the locations of gains or losses identified with various functions of MATLAB and its
toolboxes.

For this example, the Coriell cell line data are provided in a MAT file. The data
file coriell_baccgh.mat contains coriell_data, a structure containing of the
normalized average of the log2-based test to reference intensity ratios of 15 fibroblast

http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html
http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-61

cell lines and their genomic positions. The BAC targets are ordered by genome position
beginning at 1p and ending at Xq.

load coriell_baccgh

coriell_data

coriell_data =

 Sample: {1x15 cell}

 Chromosome: [2285x1 int8]

 GenomicPosition: [2285x1 int32]

 Log2Ratio: [2285x15 double]

 FISHMap: {2285x1 cell}

Visualizing the Genome Profile of the Array CGH Data Set

You can plot the genome wide log2-based test/reference intensity ratios of DNA clones.
In this example, you will display the log2 intensity ratios for cell line GM03576 for
chromosomes 1 through 23.

Find the sample index for the CM03576 cell line.

sample = find(strcmpi(coriell_data.Sample, 'GM03576'))

sample =

 8

To label chromosomes and draw the chromosome borders, you need to find the number of
data points of in each chromosome.

chr_nums = zeros(1, 23);

chr_data_len = zeros(1,23);

for c = 1:23

 tmp = coriell_data.Chromosome == c;

 chr_nums(c) = find(tmp, 1, 'last');

 chr_data_len(c) = length(find(tmp));

end

% Draw a vertical bar at the end of a chromosome to indicate the border

x_vbar = repmat(chr_nums, 3, 1);

y_vbar = repmat([2;-2;NaN], 1, 23);

4 Microarray Analysis

4-62

% Label the autosomes with their chromosome numbers, and the sex chromosome

% with X.

x_label = chr_nums - ceil(chr_data_len/2);

y_label = zeros(1, length(x_label)) - 1.6;

chr_labels = num2str((1:1:23)');

chr_labels = cellstr(chr_labels);

chr_labels{end} = 'X';

figure

hold on

h_ratio = plot(coriell_data.Log2Ratio(:,sample), '.');

h_vbar = line(x_vbar, y_vbar, 'color', [0.8 0.8 0.8]);

h_text = text(x_label, y_label, chr_labels,...

 'fontsize', 8, 'HorizontalAlignment', 'center');

h_axis = h_ratio.Parent;

h_axis.XTick = [];

h_axis.YGrid = 'on';

h_axis.Box = 'on';

xlim([0 chr_nums(23)])

ylim([-1.5 1.5])

title(coriell_data.Sample{sample})

xlabel({'', 'Chromosome'})

ylabel('Log2(T/R)')

hold off

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-63

In the plot, borders between chromosomes are indicated by grey vertical bars. The plot
indicates that the GM03576 cell line is trisomic for chromosomes 2 and 21 [3].

You can also plot the profile of each chromosome in a genome. In this example, you will
display the log2 intensity ratios for each chromosome in cell line GM05296 individually.

sample = find(strcmpi(coriell_data.Sample, 'GM05296'));

figure;

for c = 1:23

 idx = coriell_data.Chromosome == c;

 chr_y = coriell_data.Log2Ratio(idx, sample);

 subplot(5,5,c);

 hp = plot(chr_y, '.');

4 Microarray Analysis

4-64

 line([0, chr_data_len(c)], [0,0], 'color', 'r');

 h_axis = hp.Parent;

 h_axis.XTick = [];

 h_axis.Box = 'on';

 xlim([0 chr_data_len(c)])

 ylim([-1.5 1.5])

 xlabel(['chr ' chr_labels{c}], 'FontSize', 8)

end

suptitle('GM05296');

The plot indicates the GM05296 cell line has a partial trisomy at chromosome 10 and a
partial monosomy at chromosome 11.

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-65

Observe that the gains and losses of copy number are discrete. These alterations occur in
contiguous regions of a chromosome that cover several clones to entitle chromosome.

The array-based CGH data can be quite noisy. Therefore, accurate identification of
chromosome regions of equal copy number that accounts for the noise in the data
requires robust computational methods. In the rest of this example, you will work with
the data of chromosomes 9, 10 and 11 of the GM05296 cell line.

Initialize a structure array for the data of these three chromosomes.

GM05296_Data = struct('Chromosome', {9 10 11},...

 'GenomicPosition', {[], [], []},...

 'Log2Ratio', {[], [], []},...

 'SmoothedRatio', {[], [], []},...

 'DiffRatio', {[], [], []},...

 'SegIndex', {[], [], []});

Filtering and Smoothing Data

A simple approach to perform high-level smoothing is to use a nonparametric filter. The
function mslowess implements a linear fit to samples within a shifting window, is this
example you use a SPAN of 15 samples.

for iloop = 1:length(GM05296_Data)

 idx = coriell_data.Chromosome == GM05296_Data(iloop).Chromosome;

 chr_x = coriell_data.GenomicPosition(idx);

 chr_y = coriell_data.Log2Ratio(idx, sample);

 % Remove NaN data points

 idx = ~isnan(chr_y);

 GM05296_Data(iloop).GenomicPosition = double(chr_x(idx));

 GM05296_Data(iloop).Log2Ratio = chr_y(idx);

 % Smoother

 GM05296_Data(iloop).SmoothedRatio = ...

 mslowess(GM05296_Data(iloop).GenomicPosition,...

 GM05296_Data(iloop).Log2Ratio,...

 'SPAN',15);

 % Find the derivative of the smoothed ratio

 GM05296_Data(iloop).DiffRatio = ...

 diff([0; GM05296_Data(iloop).SmoothedRatio]);

end

4 Microarray Analysis

4-66

To better visualize and later validate the locations of copy number changes, we
need cytoband information. Read the human cytoband information from the
hs_cytoBand.txt data file using the cytobandread function. It returns a structure of
human cytoband information [4].

hs_cytobands = cytobandread('hs_cytoBand.txt')

% Find the centromere positions for the chromosomes.

acen_idx = strcmpi(hs_cytobands.GieStains, 'acen');

acen_ends = hs_cytobands.BandEndBPs(acen_idx);

% Convert the cytoband data from bp to kilo bp because the genomic

% positions in Coriell Cell Line data set are in kilo base pairs.

acen_pos = acen_ends(1:2:end)/1000;

hs_cytobands =

 ChromLabels: {862x1 cell}

 BandStartBPs: [862x1 int32]

 BandEndBPs: [862x1 int32]

 BandLabels: {862x1 cell}

 GieStains: {862x1 cell}

You can inspect the data by plotting the log2-based ratios, the smoothed ratios and the
derivative of the smoothed ratios together. You can also display the centromere position
of a chromosome in the data plots. The magenta vertical bar marks the centromere of the
chromosome.

for iloop = 1:length(GM05296_Data)

 chr = GM05296_Data(iloop).Chromosome;

 chr_x = GM05296_Data(iloop).GenomicPosition;

 figure

 hold on

 plot(chr_x, GM05296_Data(iloop).Log2Ratio, '.');

 line(chr_x, GM05296_Data(iloop).SmoothedRatio,...

 'Color', 'r', 'LineWidth', 2);

 line(chr_x, GM05296_Data(iloop).DiffRatio,...

 'Color', 'k', 'LineWidth', 2);

 line([acen_pos(chr), acen_pos(chr)], [-1, 1],...

 'Color', 'm', 'LineWidth', 2, 'LineStyle', '-.');

 if iloop == 1

 legend('Raw','Smoothed','Diff', 'Centromere');

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-67

 end

 ylim([-1, 1])

 xlabel('Genomic Position')

 ylabel('Log2(T/R)')

 title(sprintf('GM05296: Chromosome %d ', chr))

 hold off

end

4 Microarray Analysis

4-68

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-69

Detecting Change-Points

The derivatives of the smoothed ratio over a certain threshold usually indicate
substantial changes with large peaks, and provide the estimate of the change-point
indices. For this example you will select a threshold of 0.1.

thrd = 0.1;

for iloop = 1:length(GM05296_Data)

 idx = find(abs(GM05296_Data(iloop).DiffRatio) > thrd);

 N = numel(GM05296_Data(iloop).SmoothedRatio);

 GM05296_Data(iloop).SegIndex = [1;idx;N];

 % Number of possible segments found

4 Microarray Analysis

4-70

 fprintf('%d segments initially found on Chromosome %d.\n',...

 numel(GM05296_Data(iloop).SegIndex) - 1,...

 GM05296_Data(iloop).Chromosome)

end

1 segments initially found on Chromosome 9.

4 segments initially found on Chromosome 10.

5 segments initially found on Chromosome 11.

Optimizing Change-Points by GM Clustering

Gaussian Mixture (GM) or Expectation-Maximization (EM) clustering can provide fine
adjustments to the change-point indices [5]. The convergence to statistically optimal
change-point indices can be facilitated by surrounding each index with equal-length set
of adjacent indices. Thus each edge is associated with left and right distributions. The
GM clustering learns the maximum-likelihood parameters of the two distributions. It
then optimally adjusts the indices given the learned parameters.

You can set the length for the set of adjacent positions distributed around the change-
point indices. For this example, you will select a length of 5. You can also inspect each
change-point by plotting its GM clusters. In this example, you will plot the GM clusters
for the Chromosome 10 data.

len = 5;

for iloop = 1:length(GM05296_Data)

 seg_num = numel(GM05296_Data(iloop).SegIndex) - 1;

 if seg_num > 1

 % Plot the data points in chromosome 10 data

 if GM05296_Data(iloop).Chromosome == 10

 figure

 hold on;

 plot(GM05296_Data(iloop).GenomicPosition,...

 GM05296_Data(iloop).Log2Ratio, '.')

 ylim([-0.5, 1])

 xlabel('Genomic Position')

 ylabel('Log2(T/R)')

 title(sprintf('Chromosome %d - GM05296', ...

 GM05296_Data(iloop).Chromosome))

 end

 segidx = GM05296_Data(iloop).SegIndex;

 segidx_emadj = GM05296_Data(iloop).SegIndex;

 for jloop = 2:seg_num

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-71

 ileft = min(segidx(jloop) - len, segidx(jloop));

 iright = max(segidx(jloop) + len, segidx(jloop));

 gmx = GM05296_Data(iloop).GenomicPosition(ileft:iright);

 gmy = GM05296_Data(iloop).SmoothedRatio(ileft:iright);

 % Select initial guess for the of cluster index for each point.

 gmpart = (gmy > (min(gmy) + range(gmy)/2)) + 1;

 % Create a Gaussian mixture model object

 gm = gmdistribution.fit(gmy, 2, 'start', gmpart);

 gmid = cluster(gm,gmy);

 segidx_emadj(jloop) = find(abs(diff(gmid))==1) + ileft;

 % Plot GM clusters for the change-points in chromosome 10 data

 if GM05296_Data(iloop).Chromosome == 10

 plot(gmx(gmid==1),gmy(gmid==1), 'g.',...

 gmx(gmid==2), gmy(gmid==2), 'r.')

 end

 end

 % Remove repeat indices

 zeroidx = [diff(segidx_emadj) == 0; 0];

 GM05296_Data(iloop).SegIndex = segidx_emadj(~zeroidx);

 end

 % Number of possible segments found

 fprintf('%d segments found on Chromosome %d after GM clustering adjustment.\n',...

 numel(GM05296_Data(iloop).SegIndex) - 1,...

 GM05296_Data(iloop).Chromosome)

end

hold off;

1 segments found on Chromosome 9 after GM clustering adjustment.

3 segments found on Chromosome 10 after GM clustering adjustment.

5 segments found on Chromosome 11 after GM clustering adjustment.

4 Microarray Analysis

4-72

Testing Change-Point Significance

Once you determine the optimal change-point indices, you also need to determine if
each segment represents a statistically significant changes in DNA copy number. You
will perform permutation t-tests to assess the significance of the segments identified. A
segment includes all the data points from one change-point to the next change-point or
the chromosome end. In this example, you will perform 10,000 permutations of the data
points on two consecutive segments along the chromosome at the significance level of
0.01.

alpha = 0.01;

for iloop = 1:length(GM05296_Data)

 seg_num = numel(GM05296_Data(iloop).SegIndex) - 1;

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-73

 seg_index = GM05296_Data(iloop).SegIndex;

 if seg_num > 1

 ppvals = zeros(seg_num+1, 1);

 for sloop = 1:seg_num-1

 seg1idx = seg_index(sloop):seg_index(sloop+1)-1;

 if sloop== seg_num-1

 seg2idx = seg_index(sloop+1):(seg_index(sloop+2));

 else

 seg2idx = seg_index(sloop+1):(seg_index(sloop+2)-1);

 end

 seg1 = GM05296_Data(iloop).SmoothedRatio(seg1idx);

 seg2 = GM05296_Data(iloop).SmoothedRatio(seg2idx);

 n1 = numel(seg1);

 n2 = numel(seg2);

 N = n1+n2;

 segs = [seg1;seg2];

 % Compute observed t statistics

 t_obs = mean(seg1) - mean(seg2);

 % Permutation test

 iter = 10000;

 t_perm = zeros(iter,1);

 for i = 1:iter

 randseg = segs(randperm(N));

 t_perm(i) = abs(mean(randseg(1:n1))-mean(randseg(n1+1:N)));

 end

 ppvals(sloop+1) = sum(t_perm >= abs(t_obs))/iter;

 end

 sigidx = ppvals < alpha;

 GM05296_Data(iloop).SegIndex = seg_index(sigidx);

 end

 % Number segments after significance tests

 fprintf('%d segments found on Chromosome %d after significance tests.\n',...

 numel(GM05296_Data(iloop).SegIndex) - 1, GM05296_Data(iloop).Chromosome)

end

1 segments found on Chromosome 9 after significance tests.

3 segments found on Chromosome 10 after significance tests.

4 Microarray Analysis

4-74

4 segments found on Chromosome 11 after significance tests.

Assessing Copy Number Alterations

Cytogenetic study indicates cell line GM05296 has a trisomy at 10q21-10q24 and a
monosomy at 11p12-11p13 [3]. Plot the segment means of the three chromosomes over
the original data with bold red lines, and add the chromosome ideograms to the plots
using the chromosomeplot function. Note that the genomic positions in the Coriell cell
line data set are in kilo base pairs. Therefore, you will need to convert cytoband data
from bp to kilo bp when adding the ideograms to the plot.

for iloop = 1:length(GM05296_Data)

 figure;

 seg_num = numel(GM05296_Data(iloop).SegIndex) - 1;

 seg_mean = ones(seg_num,1);

 chr_num = GM05296_Data(iloop).Chromosome;

 for jloop = 2:seg_num+1

 idx = GM05296_Data(iloop).SegIndex(jloop-1):GM05296_Data(iloop).SegIndex(jloop);

 seg_mean(idx) = mean(GM05296_Data(iloop).Log2Ratio(idx));

 line(GM05296_Data(iloop).GenomicPosition(idx), seg_mean(idx),...

 'color', 'r', 'linewidth', 3);

 end

 line(GM05296_Data(iloop).GenomicPosition, GM05296_Data(iloop).Log2Ratio,...

 'linestyle', 'none', 'Marker', '.');

 line([acen_pos(chr_num), acen_pos(chr_num)], [-1, 1],...

 'linewidth', 2,...

 'color', 'm',...

 'linestyle', '-.');

 ylabel('Log2(T/R)')

 ax = gca;

 ax.Box = 'on';

 ylim([-1, 1])

 title(sprintf('Chromosome %d - GM05296', chr_num));

 chromosomeplot(hs_cytobands, chr_num, 'addtoplot', gca, 'unit', 2)

end

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-75

4 Microarray Analysis

4-76

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-77

As shown in the plots, no copy number alterations were found on chromosome 9, there is
copy number gain span from 10q21 to 10q24, and a copy number loss region from 11p12
to 11p13. The CNAs found match the known results in cell line GM05296 determined by
cytogenetic analysis.

You can also display the CNAs of the GM05296 cell line align to the chromosome
ideogram summary view using the chromosomeplot function. Determine the genomic
positions for the CNAs on chromosomes 10 and 11.

chr10_idx = GM05296_Data(2).SegIndex(2):GM05296_Data(2).SegIndex(3)-1;

chr10_cna_start = GM05296_Data(2).GenomicPosition(chr10_idx(1))*1000;

chr10_cna_end = GM05296_Data(2).GenomicPosition(chr10_idx(end))*1000;

chr11_idx = GM05296_Data(3).SegIndex(2):GM05296_Data(3).SegIndex(3)-1;

4 Microarray Analysis

4-78

chr11_cna_start = GM05296_Data(3).GenomicPosition(chr11_idx(1))*1000;

chr11_cna_end = GM05296_Data(3).GenomicPosition(chr11_idx(end))*1000;

Create a structure containing the copy number alteration data from the GM05296 cell
line data according to the input requirements of the chromosomeplot function.

cna_struct = struct('Chromosome', [10 11],...

 'CNVType', [2 1],...

 'Start', [chr10_cna_start, chr11_cna_start],...

 'End', [chr10_cna_end, chr11_cna_end])

cna_struct =

 Chromosome: [10 11]

 CNVType: [2 1]

 Start: [69209000 34420000]

 End: [105905000 35914000]

chromosomeplot(hs_cytobands, 'cnv', cna_struct, 'unit', 2)

title('Human Karyogram with Copy Number Alterations of GM05296')

 Detecting DNA Copy Number Alteration in Array-Based CGH Data

4-79

This example shows how MATLAB and its toolboxes provide tools for the analysis and
visualization of copy-number alterations in array-based CGH data.

References

[1] Redon, R., et al., "Global variation in copy number in the human genome", Nature,
444(7118):444-54, 2006.

[2] Pinkel, D., et al., "High resolution analysis of DNA copy number variations using
comparative genomic hybridization to microarrays", Nature Genetics, 20(2):207-11, 1998.

[3] Snijders, A.M., et al., "Assembly of microarrays for genome-wide measurement of
DNA copy number", Nature Genetics, 29(3):263-4, 2001.

4 Microarray Analysis

4-80

[4] Human Genome NCBI Build 36.

[5] Myers, C.L., et al., "Accurate detection of aneuploidies in array CGH and gene
expression microarray data", Bioinformatics, 20(18):3533-43, 2004.

http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=9606

 Exploring Gene Expression Data

4-81

Exploring Gene Expression Data

This example shows how to identify differentially expressed genes. Then it uses Gene
Ontology to determine significant biological functions that are associated to the down-
and up-regulated genes.

Introduction

Microarrays contain oligonucleotide or cDNA probes for comparing the expression profile
of genes on a genomic scale. Determining if changes in gene expression are statistically
significant between different conditions, e.g. two different tumor types, and determining
the biological function of the differentially expressed genes, are important aims in a
microarray experiment.

A publicly available dataset containing gene expression data of 42 tumor tissues of the
embryonal central nervous system (CNS, Pomeroy et al. 2002) is used for this example.
The samples were hybridized on Affymetrix® HuGeneFL GeneChip® arrays.

The CNS dataset (CEL files) is available at the CNS experiment web site. The 42
tumor tissue samples include 10 medulloblastomas, 10 rhabdoid, 10 malignant glioma,
8 supratentorial PNETS, and 4 normal human cerebella. The CNS raw dataset was
preprocessed with the Robust Multi-array Average (RMA) and GC Robust Multi-array
Average (GCRMA) procedures. For further information on Affymetrix oligonucleotide
microarray preprocessing, see Preprocessing Affymetrix Microarray Data at the Probe
Level.

You will use the t-test and false discovery rate to detect differentially expressed genes
between two of the tumor types. Additionally, you will look at Gene Ontology terms
related to the significantly up-regulated genes.

Loading the Expression Data

Load the MAT file cnsexpressiondata containing three DataMatrix objects. Gene
expression values preprocessed by RMA and GCRMA (MLE and EB) procedures
are stored in the DataMatrix objects expr_cns_rma, expr_cns_gcrma_mle, and
expr_cns_gcrma_eb respectively.

load cnsexpressiondata

In each DataMatrix object, each row corresponds to a probe set on the HuGeneFl array,
and each column corresponds to a sample. The row names are the probe set IDs and

http://www.broad.mit.edu/mpr/CNS/

4 Microarray Analysis

4-82

column names are the sample names. The DataMatrix object expr_cns_gcrma_eb will
be used in this example. You can use either of the other two expression variables as well.

You can get the properties of the DataMatrix object expr_cns_gcrma_eb using the get
command.

get(expr_cns_gcrma_eb)

 Name: ''

 RowNames: {7129x1 cell}

 ColNames: {1x42 cell}

 NRows: 7129

 NCols: 42

 NDims: 2

 ElementClass: 'single'

Determine the number of genes and number of samples in the DataMatrix object
expr_cns_gcrma_eb.

[nGenes, nSamples] = size(expr_cns_gcrma_eb)

nGenes =

 7129

nSamples =

 42

You can use gene symbols instead of the probe set IDs to label the expression values. The
gene symbols for the HuGeneFl array are provided in a MAT file containing a Map object.

load HuGeneFL_GeneSymbol_Map;

Create a cell array of gene symbols for the expression values from the
hu6800GeneSymbolMap object.

huGenes = values(hu6800GeneSymbolMap, expr_cns_gcrma_eb.RowNames);

Set the row names of the exprs_cns_gcrma_eb to gene symbols using the rownames
method of the DataMatrix object.

 Exploring Gene Expression Data

4-83

expr_cns_gcrma_eb = rownames(expr_cns_gcrma_eb, ':', huGenes);

Filtering the Expression Data

Remove gene expression data with empty gene symbols. In the example, the empty
symbols are labeled as '---'.

expr_cns_gcrma_eb('---', :) = [];

Many of the genes in this study are not expressed, or have only small variability across
the samples. Remove these genes using non-specific filtering.

Use genelowvalfilter to filter out genes with very low absolute expression values.

[mask, expr_cns_gcrma_eb] = genelowvalfilter(expr_cns_gcrma_eb);

Use genevarfilter to filter out genes with a small variance across samples.

[mask, expr_cns_gcrma_eb] = genevarfilter(expr_cns_gcrma_eb);

Determine the number of genes after filtering.

nGenes = expr_cns_gcrma_eb.NRows

nGenes =

 5669

Identifying Differential Gene Expression

You can now compare the gene expression values between two groups of data: CNS
medulloblastomas (MD) and non-neuronal origin malignant gliomas (Mglio) tumor.

From the expression data of all 42 samples, extract the data of the 10 MD samples and
the 10 Mglio samples.

MDs = strncmp(expr_cns_gcrma_eb.ColNames,'Brain_MD', 8);

Mglios = strncmp(expr_cns_gcrma_eb.ColNames,'Brain_MGlio', 11);

MDData = expr_cns_gcrma_eb(:, MDs);

get(MDData)

4 Microarray Analysis

4-84

 Name: ''

 RowNames: {5669x1 cell}

 ColNames: {1x10 cell}

 NRows: 5669

 NCols: 10

 NDims: 2

 ElementClass: 'single'

MglioData = expr_cns_gcrma_eb(:, Mglios);

get(MglioData)

 Name: ''

 RowNames: {5669x1 cell}

 ColNames: {1x10 cell}

 NRows: 5669

 NCols: 10

 NDims: 2

 ElementClass: 'single'

A standard statistical test for detecting significant changes between the measurement of
a variable in two groups is the t-test. Conduct a t-test for each gene to identify significant
changes in expression values between the MD samples and Mglio samples. You can
inspect the test results from the normal quantile plot of t-scores and the histograms of t-
scores and p-values of the t-tests.

[pvalues, tscores] = mattest(MDData, MglioData,...

 'Showhist', true', 'Showplot', true);

 Exploring Gene Expression Data

4-85

4 Microarray Analysis

4-86

In any test situation, two types of errors can occur, a false positive by declaring that
a gene is differentially expressed when it is not, and a false negative when the test
fails to identify a truly differentially expressed gene. In multiple hypothesis testing,
which simultaneously tests the null hypothesis of thousands of genes using microarray
expression data, each test has a specific false positive rate, or a false discovery rate
(FDR). False discovery rate is defined as the expected ratio of the number of false
positives to the total number of positive calls in a differential expression analysis
between two groups of samples (Storey et al., 2003).

In this example, you will compute the FDR using the Storey-Tibshirani procedure
(Storey et al., 2003). The procedure also computes the q-value of a test, which measures
the minimum FDR that occurs when calling the test significant. The estimation of
FDR depends on the truly null distribution of the multiple tests, which is unknown.

 Exploring Gene Expression Data

4-87

Permutation methods can be used to estimate the truly null distribution of the test
statistics by permuting the columns of the gene expression data matrix (Storey et
al., 2003, Dudoit et al., 2003). Depending on the sample size, it may not be feasible
to consider all possible permutations. Usually a random subset of permutations are
considered in the case of large sample size. Use the nchoosek function in Statistics and
Machine Learning Toolbox™ to find out the number of all possible permutations of the
samples in this example.

all_possible_perms = nchoosek(1:MDData.NCols+MglioData.NCols, MDData.NCols);

size(all_possible_perms, 1)

ans =

 184756

Perform a permutation t-test using mattest and the PERMUTE option to compute the
p-values of 10,000 permutations by permuting the columns of the gene expression data
matrix of MDData and MglioData (Dudoit et al., 2003).

pvaluesCorr = mattest(MDData, MglioData, 'Permute', 10000);

Determine the number of genes considered to have statistical significance at the p-value
cutoff of 0.05. Note: You may get a different number of genes due to the permutation test
outcome.

cutoff = 0.05;

sum(pvaluesCorr < cutoff)

ans =

 2121

Estimate the FDR and q-values for each test using mafdr. The quantity pi0 is the overall
proportion of true null hypotheses in the study. It is estimated from the simulated null
distribution via bootstrap or the cubic polynomial fit. Note: You can also manually set the
value of lambda for estimating pi0.

figure;

[pFDR, qvalues] = mafdr(pvaluesCorr, 'showplot', true);

4 Microarray Analysis

4-88

Determine the number of genes that have q-values less than the cutoff value. Note:
You may get a different number of genes due to the permutation test and the bootstrap
outcomes.

sum(qvalues < cutoff)

ans =

 2173

Many genes with low FDR implies that the two groups, MD and Mglio, are biologically
distinct.

 Exploring Gene Expression Data

4-89

You can also empirically estimate the FDR adjusted p-values using the Benjamini-
Hochberg (BH) procedure (Benjamini et al, 1995) by setting the mafdr input parameter
BHFDR to true.

pvaluesBH = mafdr(pvaluesCorr, 'BHFDR', true);

sum(pvaluesBH < cutoff)

ans =

 1374

You can store the t-scores, p-values, pFDRs, q-values and BH FDR corrected p-values
together as a DataMatrix object.

testResults = [tscores pvaluesCorr pFDR qvalues pvaluesBH];

Update the column name for BH FDR corrected p-values using the colnames method of
DataMatrix object.

testResults = colnames(testResults, 5, {'FDR_BH'});

You can sort by p-values pvaluesCorr using the sortrows mathod.

testResults = sortrows(testResults, 2);

Display the first 23 genes in testResults. Note: Your results may be different from
those shown below due to the permutation test and the bootstrap outcomes.

testResults(1:23, :)

ans =

 t-scores p-values FDR q-values FDR_BH

 PLEC1 -9.6223 6.7194e-09 1.3675e-05 7.171e-06 1.9974e-05

 HNRPA1 9.359 1.382e-08 1.4063e-05 7.171e-06 1.9974e-05

 FCGR2A -9.3548 1.394e-08 9.457e-06 7.171e-06 1.9974e-05

 PLEC1 -9.3495 1.4094e-08 7.171e-06 7.171e-06 1.9974e-05

 FBL 9.1518 1.9875e-08 8.0899e-06 7.1728e-06 1.998e-05

 KIAA0367 -8.996 2.4324e-08 8.2509e-06 7.1728e-06 1.998e-05

 ID2B -8.9285 2.6667e-08 7.7533e-06 7.1728e-06 1.998e-05

 RBMX 8.8905 2.8195e-08 7.1728e-06 7.1728e-06 1.998e-05

4 Microarray Analysis

4-90

 PAFAH1B3 8.7561 3.5317e-08 7.9864e-06 7.9864e-06 2.2246e-05

 H3F3A 8.6512 4.5191e-08 9.1973e-06 8.5559e-06 2.3832e-05

 LRP1 -8.6465 4.6243e-08 8.5559e-06 8.5559e-06 2.3832e-05

 PEA15 -8.3256 1.1419e-07 1.9367e-05 1.9367e-05 5.3947e-05

 ID2B -8.1183 1.7041e-07 2.6679e-05 2.4793e-05 6.9059e-05

 SFRS3 8.1166 1.7055e-07 2.4793e-05 2.4793e-05 6.9059e-05

 HLA-DPA1 -7.8546 2.4004e-07 3.2569e-05 3.2569e-05 9.072e-05

 C5orf13 7.7195 2.9229e-07 3.7179e-05 3.3452e-05 9.3179e-05

 PTMA 7.7013 2.9658e-07 3.5506e-05 3.3452e-05 9.3179e-05

 NAP1L1 7.674 3.0477e-07 3.446e-05 3.3452e-05 9.3179e-05

 HMGB2 7.6532 3.123e-07 3.3452e-05 3.3452e-05 9.3179e-05

 RAB31 -13.664 3.308e-07 3.3662e-05 3.3662e-05 9.3766e-05

 ARAF -7.5549 4.7835e-07 4.6359e-05 4.614e-05 0.00012852

 PTPRZ1 -7.5352 4.9875e-07 4.614e-05 4.614e-05 0.00012852

 SPARCL1 -7.3639 7.8426e-07 6.9397e-05 6.2018e-05 0.00017275

A gene is considered to be differentially expressed between the two groups of samples if
it shows both statistical and biological significance. In this example, you will compare
the gene expression ratio of MD over Mglio tumor samples. Therefore an up-regulated
gene in this example has higher expression in MD and down-regulate gene has higher
expression in Mglio.

Plot the -log10 of p-values against the biological effect in a volcano plot. Note: From the
volcano plot UI, you can interactively change the p-value cutoff and fold change limit,
and export differentially expressed genes.

diffStruct = mavolcanoplot(MDData, MglioData, pvaluesCorr)

diffStruct =

 Name: 'Differentially Expressed'

 PVCutoff: 0.0500

 FCThreshold: 2

 GeneLabels: {327x1 cell}

 PValues: [327x1 bioma.data.DataMatrix]

 FoldChanges: [327x1 bioma.data.DataMatrix]

 Exploring Gene Expression Data

4-91

Ctrl-click genes in the gene lists to label the genes in the plot. As seen in the volcano plot,
genes specific for neuronal based cerebella granule cells, such as ZIC and NEUROD,
are found in the up-regulated gene list, while genes typical of the astrocytic and
oligodendrocytic lineage and cell differentiation, such as SOX2, PEA15, and ID2B, are
found in the down-regulated list.

Determine the number of differentially expressed genes.

nDiffGenes = diffStruct.PValues.NRows

nDiffGenes =

4 Microarray Analysis

4-92

 327

Get the list of up-regulated genes for MD compared to Mglio.

up_geneidx = find(diffStruct.FoldChanges > 0);

up_genes = rownames(diffStruct.FoldChanges, up_geneidx);

nUpGenes = length(up_geneidx)

nUpGenes =

 225

Determine the number of down-regulated genes for MD compared to Mglio.

nDownGenes = sum(diffStruct.FoldChanges < 0)

nDownGenes =

 102

Annotating Up-Regulated Genes Using Gene Ontology

Use Gene Ontology (GO) to annotate the differentially expressed genes. You can look at
the up-regulated genes from the analysis above. Download the Homo sapiens annotations
(gene_association.goa_human.gz file) from Gene Ontology Current Annotations,
unzip, and store it in your the current directory.

Find the indices of the up-regulated genes for Gene Ontology analysis.

huGenes = rownames(expr_cns_gcrma_eb);

for i = 1:nUpGenes

 up_geneidx(i) = find(strncmpi(huGenes, up_genes{i}, length(up_genes{i})), 1);

end

Load the Gene Ontology database into a MATLAB object using the geneont function.

GO = geneont('live',true);

Read the Homo sapiens gene annotation file. For this example, you will look only at genes
that are related to molecular function, so you only need to read the information where

http://www.geneontology.org/GO.current.annotations.shtml

 Exploring Gene Expression Data

4-93

the Aspect field is set to 'F'. The fields that are of interest are the gene symbol and
associated ID. In GO Annotation files these have field names DB_Object_Symbol and
GOid respectively.

HGann = goannotread('gene_association.goa_human',...

 'Aspect','F','Fields',{'DB_Object_Symbol','GOid'});

Create a map between annotated genes and GO terms.

HGmap = containers.Map();

for i = 1:numel(HGann)

 key = HGann(i).DB_Object_Symbol;

 if isKey(HGmap,key)

 HGmap(key) = [HGmap(key) HGann(i).GOid];

 else

 HGmap(key) = HGann(i).GOid;

 end

end

Determine the number of Homo sapiens annotated genes related to molecular function.

HGmap.Count

ans =

 16006

Not all of the 5758 genes on the HuGeneFL chip are annotated. For every gene on the
chip, see if it is annotated by comparing its gene symbol to the list of gene symbols
from GO. Track the number of annotated genes and the number of up-regulated genes
associated with each GO term. Note that data in public repositories is frequently curated
and updated; therefore the results of this example might be slightly different when you
use up-to-date datasets. It is also possible that you get warnings about invalid or obsolete
IDs due to an updated Homo sapiens gene annotation file.

m = GO.Terms(end).id; % gets the last term id

chipgenesCount = zeros(m,1); % a vector of GO term counts for the entire chip.

upgenesCount = zeros(m,1); % a vector of GO term counts for up-regulated genes.

for i = 1:length(huGenes)

 if isKey(HGmap,huGenes{i})

 goid = getrelatives(GO,HGmap(huGenes{i}));

 % Update the tally

4 Microarray Analysis

4-94

 chipgenesCount(goid) = chipgenesCount(goid) + 1;

 if (any(i == up_geneidx))

 upgenesCount(goid) = upgenesCount(goid) +1;

 end

 end

end

Determine the statistically significant GO terms using the hypergeometric probability
distribution. For each GO term, a p-value is calculated representing the probability that
the number of annotated genes associated with it could have been found by chance.

gopvalues = hygepdf(upgenesCount,max(chipgenesCount),...

 max(upgenesCount),chipgenesCount);

[dummy, idx] = sort(gopvalues);

report = sprintf('GO Term p-value counts definition\n');

for i = 1:10

 term = idx(i);

 report = sprintf('%s%s\t%-1.5f\t%3d / %3d\t%s...\n',...

 report, char(num2goid(term)), gopvalues(term),...

 upgenesCount(term), chipgenesCount(term),...

 GO(term).Term.definition(2:min(50,end)));

end

disp(report);

GO Term p-value counts definition

GO:0003735 0.00000 57 / 162 The action of a molecule that contributes to the ...

GO:0019843 0.00000 53 / 219 Interacting selectively and non-covalently with r...

GO:0008135 0.00000 55 / 244 Functions during translation by interacting selec...

GO:0000049 0.00000 52 / 220 Interacting selectively and non-covalently with t...

GO:0000498 0.00000 51 / 213 Interacting selectively and non-covalently with r...

GO:0001069 0.00000 51 / 213 Interacting selectively and non-covalently with a...

GO:0033204 0.00000 51 / 213 Interacting selectively and non-covalently with t...

GO:0034336 0.00000 51 / 213 Interacting selectively and non-covalently with a...

GO:0034583 0.00000 51 / 213 Interacting selectively and non-covalently with a...

GO:0034584 0.00000 51 / 213 Interacting selectively and non-covalently with a...

Inspect the significant GO terms and select the terms related to specific molecule
functions to build a sub-ontology that includes the ancestors of the terms. Visualize
this ontology using the biograph function. You can also color the graphs nodes. In
this example, the red nodes are the most significant, while the blue nodes are the least
significant gene ontology terms. Note: The GO terms returned may differ from those
shown due to the frequent update to the Homo sapiens gene annotation file.

 Exploring Gene Expression Data

4-95

fcnAncestors = GO(getancestors(GO,idx(1:5)))

[cm,acc,rels] = getmatrix(fcnAncestors);

BG = biograph(cm,get(fcnAncestors.Terms,'name'))

for i = 1:numel(acc)

 pval = gopvalues(acc(i));

 color = [(1-pval).^(1) pval.^(1/8) pval.^(1/8)];

 BG.Nodes(i).Color = color;

end

view(BG)

Gene Ontology object with 13 Terms.

Biograph object with 13 nodes and 14 edges.

Finding the Differentially Expressed Genes in Pathways

You can query the pathway information of the differentially expressed genes from the
KEGG pathway database through KEGG's Web Service.

http://www.genome.jp

4 Microarray Analysis

4-96

Following are a few pathway maps with the genes in the up-regulated gene list
highlighted:

Cell Cycle

Hedgehog Signaling pathway

mTor Signaling pathway

References

[1] Pomeroy, S.L., et al., "Prediction of central nervous system embryonal tumour
outcome based on gene expression". Nature, 415(6870):436-42, 2001.

[2] Storey, J.D., and Tibshirani, R., "Statistical significance for genomewide studies",
PNAS, 100(16):9440-5, 2003.

[3] Dudoit, S., Shaffer, J.P., and Boldrick, J.C., "Multiple hypothesis testing in
microarray experiment", Statistical Science, 18(1):71-103, 2003.

[4] Benjamini, Y., and Hochberg, Y., "Controlling the false discovery rate: a practical and
powerful approach to multiple testing", Journal of the Royal Statistical Society, Series B,
57(1):289-300, 1995.

http://www.genome.ad.jp/dbget-bin/show_pathway?hsa04110+3065+5111+4171
http://www.genome.ad.jp/dbget-bin/show_pathway?hsa04340+122011
http://www.genome.ad.jp/dbget-bin/show_pathway?hsa04150+1975+6194

5

Phylogenetic Analysis

• “Overview of Phylogenetic Analysis” on page 5-2
• “Building a Phylogenetic Tree” on page 5-3
• “Phylogenetic Tree App Reference” on page 5-14

5 Phylogenetic Analysis

5-2

Overview of Phylogenetic Analysis

Phylogenetic analysis is the process you use to determine the evolutionary relationships
between organisms. The results of an analysis can be drawn in a hierarchical diagram
called a cladogram or phylogram (phylogenetic tree). The branches in a tree are based
on the hypothesized evolutionary relationships (phylogeny) between organisms. Each
member in a branch, also known as a monophyletic group, is assumed to be descended
from a common ancestor. Originally, phylogenetic trees were created using morphology,
but now, determining evolutionary relationships includes matching patterns in nucleic
acid and protein sequences.

 Building a Phylogenetic Tree

5-3

Building a Phylogenetic Tree

In this section...

“Overview of the Primate Example” on page 5-3
“Searching NCBI for Phylogenetic Data” on page 5-4
“Creating a Phylogenetic Tree for Five Species” on page 5-6
“Creating a Phylogenetic Tree for Twelve Species” on page 5-8
“Exploring the Phylogenetic Tree” on page 5-10

Note: For information on creating a phylogenetic tree with multiply aligned sequences,
see the phytree function.

Overview of the Primate Example

In this example, a phylogenetic tree is constructed from mitochondrial DNA (mtDNA)
sequences for the family Hominidae. This family includes gorillas, chimpanzees,
orangutans, and humans.

The following procedures demonstrate the phylogenetic analysis features in the
Bioinformatics Toolbox software. They are not intended to teach the process of
phylogenetic analysis, but to show you how to use MathWorks products to create a
phylogenetic tree from a set of nonaligned nucleotide sequences.

The origin of modern humans is a heavily debated issue that scientists have recently
tackled by using mitochondrial DNA (mtDNA) sequences. One hypothesis explains the
limited genetic variation of human mtDNA in terms of a recent common genetic ancestry,
implying that all modern population mtDNA originated from a single woman who lived
in Africa less than 200,000 years ago.

Why Use Mitochondrial DNA Sequences for Phylogenetic Study?

Mitochondrial DNA sequences, like the Y chromosome, do not recombine and are
inherited from the maternal parent. This lack of recombination allows sequences to
be traced through one genetic line and all polymorphisms assumed to be caused by
mutations.

5 Phylogenetic Analysis

5-4

Mitochondrial DNA in mammals has a faster mutation rate than nuclear DNA
sequences. This faster rate of mutation produces more variance between sequences and
is an advantage when studying closely related species. The mitochondrial control region
(Displacement or D-loop) is one of the fastest mutating sequence regions in animal DNA.

Neanderthal DNA

The ability to isolate mitochondrial DNA (mtDNA) from palaeontological samples has
allowed genetic comparisons between extinct species and closely related nonextinct
species. The reasons for isolating mtDNA instead of nuclear DNA in fossil samples have
to do with the fact that:

• mtDNA, because it is circular, is more stable and degrades slower then nuclear DNA.
• Each cell can contain a thousand copies of mtDNA and only a single copy of nuclear

DNA.

While there is still controversy as to whether Neanderthals are direct ancestors of
humans or evolved independently, the use of ancient genetic sequences in phylogenetic
analysis adds an interesting dimension to the question of human ancestry.

References

Ovchinnikov I., et al. (2000). Molecular analysis of Neanderthal DNA from the northern
Caucasus. Nature 404(6777), 490–493.

Sajantila A., et al. (1995). Genes and languages in Europe: an analysis of mitochondrial
lineages. Genome Research 5 (1), 42–52.

Krings M., et al. (1997). Neanderthal DNA sequences and the origin of modern humans.
Cell 90 (1), 19–30.

Jensen-Seaman, M., Kidd K. (2001). Mitochondrial DNA variation and biogeography of
eastern gorillas. Molecular Ecology 10(9), 2241–2247.

Searching NCBI for Phylogenetic Data

The NCBI taxonomy Web site includes phylogenetic and taxonomic information from
many sources. These sources include the published literature, Web databases, and
taxonomy experts. And while the NCBI taxonomy database is not a phylogenetic or
taxonomic authority, it can be useful as a gateway to the NCBI biological sequence
databases.

 Building a Phylogenetic Tree

5-5

This procedure uses the family Hominidae (orangutans, chimpanzees, gorillas, and
humans) as a taxonomy example for searching the NCBI Web site and locating
mitochondrial D-loop sequences.

1 Use the MATLAB Help browser to search for data on the Web. In the MATLAB
Command Window, type

web('http://www.ncbi.nlm.nih.gov')

A separate browser window opens with the home page for the NCBI Web site.
2 Search the NCBI Web site for information. For example, to search for the human

taxonomy, from the Search list, select Taxonomy, and in the for box, enter
hominidae.

The NCBI Web search returns a list of links to relevant pages.

3 Select the taxonomy link for the family Hominidae. A page with the taxonomy for the
family is shown.

5 Phylogenetic Analysis

5-6

Creating a Phylogenetic Tree for Five Species

Drawing a phylogenetic tree using sequence data is helpful when you are trying to
visualize the evolutionary relationships between species. The sequences can be multiply
aligned or a set of nonaligned sequences, you can select a method for calculating
pairwise distances between sequences, and you can select a method for calculating the
hierarchical clustering distances used to build a tree.

 Building a Phylogenetic Tree

5-7

After locating the GenBank accession codes for the sequences you are interested in
studying, you can create a phylogenetic tree with the data. For information on locating
accession codes, see “Searching NCBI for Phylogenetic Data” on page 5-4.

In the following example, you will use the Jukes-Cantor method to calculate distances
between sequences, and the Unweighted Pair Group Method Average (UPGMA) method
for linking the tree nodes.

1 Create a MATLAB structure with information about the sequences. This step uses
the accession codes for the mitochondrial D-loop sequences isolated from different
hominid species.

data = {'German_Neanderthal' 'AF011222';

 'Russian_Neanderthal' 'AF254446';

 'European_Human' 'X90314' ;

 'Mountain_Gorilla_Rwanda' 'AF089820';

 'Chimp_Troglodytes' 'AF176766';

 };

2 Retrieve sequence data from the GenBank database and copy into the MATLAB
environment.

for ind = 1:5

 seqs(ind).Header = data{ind,1};

 seqs(ind).Sequence = getgenbank(data{ind,2},...

 'sequenceonly', true);

end

3 Calculate pairwise distances and create a phytree object. For example, compute the
pairwise distances using the Jukes-Cantor distance method and build a phylogenetic
tree using the UPGMA linkage method. Since the sequences are not prealigned,
seqpdist pairwise aligns them before computing the distances.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alphabet','DNA');

tree = seqlinkage(distances,'UPGMA',seqs)

The MATLAB software displays information about the phytree object. The function
seqpdist calculates the pairwise distances between pairs of sequences while the
function seqlinkage uses the distances to build a hierarchical cluster tree. First,
the most similar sequences are grouped together, and then sequences are added to
the tree in descending order of similarity.

Phylogenetic tree object with 5 leaves (4 branches)

4 Draw a phylogenetic tree.

5 Phylogenetic Analysis

5-8

h = plot(tree,'orient','top');

ylabel('Evolutionary distance')

set(h.terminalNodeLabels,'Rotation',65)

The MATLAB software draws a phylogenetic tree in a Figure window. In the figure
below, the hypothesized evolutionary relationships between the species is shown by
the location of species on the branches. The horizontal distances do not have any
biological significance.

Creating a Phylogenetic Tree for Twelve Species

Plotting a simple phylogenetic tree for five species seems to indicate a number of
monophyletic groups (see “Creating a Phylogenetic Tree for Five Species” on page

 Building a Phylogenetic Tree

5-9

5-6). After a preliminary analysis with five species, you can add more species to
your phylogenetic tree. Adding more species to the data set will help you to confirm the
observed monophyletic groups are valid.

1 Add more sequences to a MATLAB structure. For example, add mtDNA D-loop
sequences for other hominid species.

data2 = {'Puti_Orangutan' 'AF451972';

 'Jari_Orangutan' 'AF451964';

 'Western_Lowland_Gorilla' 'AY079510';

 'Eastern_Lowland_Gorilla' 'AF050738';

 'Chimp_Schweinfurthii' 'AF176722';

 'Chimp_Vellerosus' 'AF315498';

 'Chimp_Verus' 'AF176731';

 };

2 Get additional sequence data from the GenBank database, and copy the data into the
next indices of a MATLAB structure.

for ind = 1:7

 seqs(ind+5).Header = data2{ind,1};

 seqs(ind+5).Sequence = getgenbank(data2{ind,2},...

 'sequenceonly', true);

end

3 Calculate pairwise distances and the hierarchical linkage.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alpha','DNA');

tree = seqlinkage(distances,'UPGMA',seqs);

4 Draw a phylogenetic tree.

h = plot(tree,'orient','top');

ylabel('Evolutionary distance')

set(h.terminalNodeLabels,'Rotation',65)

The MATLAB software draws a phylogenetic tree in a Figure window. You can see
four main clades for humans, gorillas, chimpanzee, and orangutans.

5 Phylogenetic Analysis

5-10

Exploring the Phylogenetic Tree

After you create a phylogenetic tree, you can explore the tree using the MATLAB
command line or the Phylogenetic Tree app. This procedure uses the tree created in
“Creating a Phylogenetic Tree for Twelve Species” on page 5-8 as an example.

1 List the members of a tree.

names = get(tree,'LeafNames')

names =

 'German_Neanderthal'

 'Russian_Neanderthal'

 Building a Phylogenetic Tree

5-11

 'European_Human'

 'Chimp_Troglodytes'

 'Chimp_Schweinfurthii'

 'Chimp_Verus'

 'Chimp_Vellerosus'

 'Puti_Orangutan'

 'Jari_Orangutan'

 'Mountain_Gorilla_Rwanda'

 'Eastern_Lowland_Gorilla'

 'Western_Lowland_Gorilla'

From the list, you can determine the indices for its members. For example, the
European Human leaf is the third entry.

2 Find the closest species to a selected species in a tree. For example, find the species
closest to the European human.

[h_all,h_leaves] = select(tree,'reference',3,...

 'criteria','distance',...

 'threshold',0.6);

h_all is a list of indices for the nodes within a patristic distance of 0.6 to the
European human leaf, while h_leaves is a list of indices for only the leaf nodes
within the same patristic distance.

A patristic distance is the path length between species calculated from the
hierarchical clustering distances. The path distance is not necessarily the biological
distance.

3 List the names of the closest species.

subtree_names = names(h_leaves)

The MATLAB software prints a list of species with a patristic distance to the
European human less than the specified distance. In this case, the patristic distance
threshold is less than 0.6.

 subtree_names =

 'German_Neanderthal'

 'Russian_Neanderthal'

 'European_Human'

 'Chimp_Schweinfurthii'

 'Chimp_Verus'

 'Chimp_Troglodytes'

5 Phylogenetic Analysis

5-12

4 Extract a subtree from the whole tree by removing unwanted leaves. For example,
prune the tree to species within 0.6 of the European human species.

leaves_to_prune = ~h_leaves;

pruned_tree = prune(tree,leaves_to_prune)

h = plot(pruned_tree,'orient','top');

ylabel('Evolutionary distance')

set(h.terminalNodeLabels,'Rotation',65)

The MATLAB software returns information about the new subtree and plots the
pruned phylogenetic tree in a Figure window.

Phylogenetic tree object with 6 leaves (5 branches)

5 Explore, edit, and format a phylogenetic tree using the Phylogenetic Tree app.

 Building a Phylogenetic Tree

5-13

phytreeviewer(pruned_tree)

The Phylogenetic Tree window opens, showing the tree.

You can interactively change the appearance of the tree using the app. For
information on using this app, see “Phylogenetic Tree App Reference” on page
5-14.

5 Phylogenetic Analysis

5-14

Phylogenetic Tree App Reference

In this section...

“Overview of the Phylogenetic Tree App” on page 5-14
“Opening the Phylogenetic Tree App” on page 5-14
“File Menu” on page 5-15
“Tools Menu” on page 5-27
“Window Menu” on page 5-36
“Help Menu” on page 5-36

Overview of the Phylogenetic Tree App

The Phylogenetic Tree app allows you to view, edit, format, and explore phylogenetic tree
data. With this app you can prune, reorder, rename branches, and explore distances. You
can also open or save Newick or ClustalW tree formatted files. The following sections give
a description of menu commands and features for creating publishable tree figures.

Opening the Phylogenetic Tree App

This section illustrates how to draw a phylogenetic tree from data in a phytree object or
a previously saved file.

The Phylogenetic Tree app can read data from Newick and ClustalW tree formatted files.

This procedure uses the phylogenetic tree data stored in the file pf00002.tree as an
example. The data was retrieved from the protein family (PFAM) Web database and
saved to a file using the accession number PF00002 and the function gethmmtree.

1 Create a phytree object. For example, to create a phytree object from tree data in
the file pf00002.tree, type

tr= phytreeread('pf00002.tree')

The MATLAB software creates a phytree object.

Phylogenetic tree object with 33 leaves (32 branches)

2 View the phylogenetic tree using the app.

phytreeviewer(tr)

 Phylogenetic Tree App Reference

5-15

Alternatively, click Phylogenetic Tree on the Apps tab.

File Menu

The File menu includes the standard commands for opening and closing a file, and it
includes commands to use phytree object data from the MATLAB Workspace. The File
menu commands are shown below.

5 Phylogenetic Analysis

5-16

New Viewer Command

Use the New Viewer command to open tree data from a file into a second Phylogenetic
Tree viewer.

1 From the File menu, select New Viewer.

The Open A Phylogenetic Tree dialog box opens.

 Phylogenetic Tree App Reference

5-17

2 Choose the source for a tree.

• MATLAB Workspace — Select the Import from Workspace options, and then
select a phytree object from the list.

• File — Select the Open phylogenetic tree file option, click the Browse
button, select a directory, select a file with the extension .tree, and then click
Open. The toolbox uses the file extension .tree for Newick-formatted files, but
you can use any Newick-formatted file with any extension.

5 Phylogenetic Analysis

5-18

A second Phylogenetic Tree viewer opens with tree data from the selected file.

Open Command

Use the Open command to read tree data from a Newick-formatted file and display that
data in the app.

1 From the File menu, click Open.

The Select Phylogenetic Tree File dialog box opens.
2 Select a directory, select a Newick-formatted file, and then click Open. The app uses

the file extension .tree for Newick-formatted files, but you can use any Newick-
formatted file with any extension.

The app replaces the current tree data with data from the selected file.

Import from Workspace Command

Use the Import from Workspace command to read tree data from a phytree object in
the MATLAB Workspace and display the data using the app.

1 From the File menu, select Import from Workspace.

The Get Phytree Object dialog box opens.

 Phylogenetic Tree App Reference

5-19

2 From the list, select a phytree object in the MATLAB Workspace.
3 Click the Import button.

The app replaces the current tree data with data from the selected object.

Open Original in New Viewer

There may be times when you make changes that you would like to undo. The
Phylogenetic Tree app does not have an undo command, but you can get back to the
original tree you started viewing with the Open Original in New Viewer command.

From the File menu, select Open Original in New Viewer.

A new Phylogenetic Tree viewer opens with the original tree.

Save As Command

After you create a phytree object or prune a tree from existing data, you can save the
resulting tree in a Newick-formatted file. The sequence data used to create the phytree
object is not saved with the tree.

1 From the File menu, select Save As.

The Save Phylogenetic tree as dialog box opens.

5 Phylogenetic Analysis

5-20

2 In the Filename box, enter the name of a file. The toolbox uses the file extension
.tree for Newick-formatted files, but you can use any file extension.

3 Click Save.

The app saves tree data without the deleted branches, and it saves changes to
branch and leaf names. Formatting changes such as branch rotations, collapsed
branches, and zoom settings are not saved in the file.

Export to New Viewer Command

Because some of the Phylogenetic Tree viewer commands cannot be undone (for example,
the Prune command), you might want to make a copy of your tree before trying a
command. At other times, you might want to compare two views of the same tree, and
copying a tree to a new tool window allows you to make changes to both tree views
independently .

1 Select File > Export to New Viewer, and then select either With Hidden Nodes
or Only Displayed.

A new Phylogenetic Tree viewer opens with a copy of the tree.
2 Use the new figure to continue your analysis.

Export to Workspace Command

The Phylogenetic Tree app can open Newick-formatted files with tree data. However,
it does not create a phytree object in the MATLAB Workspace. If you want to
programmatically explore phylogenetic trees, you need to use the Export to Workspace
command.

1 Select File > Export to Workspace, and then select either With Hidden Nodes or
Only Displayed.

The Export to Workspace dialog box opens.
2 In the Workspace variable name box, enter the name for your phylogenetic tree

data. For example, enter MyTree.

 Phylogenetic Tree App Reference

5-21

3 Click OK.

The app creates a phytree object in the MATLAB Workspace.

Print to Figure Command

After you have explored the relationships between branches and leaves in your tree, you
can copy the tree to a MATLAB Figure window. Using a Figure window lets you use all
the features for annotating, changing font characteristics, and getting your figure ready
for publication. Also, from the Figure window, you can save an image of the tree as it was
displayed in the Phylogenetic Tree app.

1 From the File menu, select Print to Figure, and then select either With Hidden
Nodes or Only Displayed.

The Print Phylogenetic Tree to Figure dialog box opens.

5 Phylogenetic Analysis

5-22

2 Select one of the Rendering Types.

 Phylogenetic Tree App Reference

5-23

Rendering Type Description

'square' (default)

5 Phylogenetic Analysis

5-24

Rendering Type Description

'angular'

'radial'

 Phylogenetic Tree App Reference

5-25

Rendering Type Description

'equalangle'

Tip This rendering type hides the significance of the root
node and emphasizes clusters, thereby making it useful
for visually assessing clusters and detecting outliers.

'equaldaylight'

Tip This rendering type hides the significance of the root
node and emphasizes clusters, thereby making it useful
for visually assessing clusters and detecting outliers.

3 Select the Display Labels you want on your figure. You can select from all to none
of the options.

5 Phylogenetic Analysis

5-26

• Branch Nodes — Display branch node names on the figure.
• Leaf Nodes — Display leaf node names on the figure.
• Terminal Nodes — Display terminal node names on the right border.

4 Click the Print button.

A new Figure window opens with the characteristics you selected.

Print Preview Command

When you print from the Phylogenetic Tree app or a MATLAB Figure window (with a
tree published from the viewer), you can specify setup options for printing a tree.

1 From the File menu, select Print Preview.

The Print Preview window opens, which you can use to select page formatting
options.

 Phylogenetic Tree App Reference

5-27

2 Select the page formatting options and values you want, and then click Print.

Print Command

Use the Print command to make a copy of your phylogenetic tree after you use the Print
Preview command to select formatting options.

1 From the File menu, select Print.

The Print dialog box opens.
2 From the Name list, select a printer, and then click OK.

Tools Menu

Use the Tools menu to:

• Explore branch paths

5 Phylogenetic Analysis

5-28

• Rotate branches
• Find, rename, hide, and prune branches and leaves.

The Tools menu and toolbar contain most of the commands specific to trees and
phylogenetic analysis. Use these commands and modes to edit and format your tree
interactively. The Tools menu commands are:

Inspect Mode

Viewing a phylogenetic tree in the Phylogenetic Tree app provides a rough idea of
how closely related two sequences are. However, to see exactly how closely related
two sequences are, measure the distance of the path between them. Use the Inspect
command to display and measure the path between two sequences.

 Phylogenetic Tree App Reference

5-29

1
Select Tools > Inspect, or from the toolbar, click the Inspect Tool Mode icon .

The app is set to inspect mode.
2 Click a branch or leaf node (selected node), and then hover your cursor over another

branch or leaf node (current node).

The app highlights the path between the two nodes and displays the path length
in the pop-up window. The path length is the patristic distance calculated by the
seqpdist function.

Collapse and Expand Branch Mode

Some trees have thousands of leaf and branch nodes. Displaying all the nodes can
create an unreadable tree diagram. By collapsing some branches, you can better see the
relationships between the remaining nodes.

1 Select Tools > Collapse/Expand, or from the toolbar, click the Collapse/Expand

Brand Mode icon .

The app is set to collapse/expand mode.
2 Point to a branch.

The paths, branch nodes, and leaf nodes below the selected branch appear in gray,
indicating you selected them to collapse (hide from view).

3 Click the branch node.

5 Phylogenetic Analysis

5-30

The app hides the display of paths, branch nodes, and leaf nodes below the selected
branch. However, it does not remove the data.

4 To expand a collapsed branch, click it or select Tools > Reset View.

Tip After collapsing nodes, you can redraw the tree by selecting Tools > Fit to Window.

Rotate Branch Mode

A phylogenetic tree is initially created by pairing the two most similar sequences and
then adding the remaining sequences in a decreasing order of similarity. You can rotate
branches to emphasize the direction of evolution.

1 Select Tools > Rotate Branch, or from the toolbar, click the Rotate Branch Mode

icon .

The app is set to rotate branch mode.
2 Point to a branch node.

3 Click the branch node.

 Phylogenetic Tree App Reference

5-31

The branch and leaf nodes below the selected branch node rotate 180 degrees around
the branch node.

4 To undo the rotation, simply click the branch node again.

Rename Leaf or Branch Mode

The Phylogenetic Tree app takes the node names from a phytree object and creates
numbered branch names starting with Branch 1. You can edit any of the leaf or branch
names.

1 Select Tools > Rename, or from the toolbar, click the Rename Leaf/Branch Mode

icon .

The app is set to rename mode.
2 Click a branch or leaf node.

A text box opens with the current name of the node.
3 In the text box, edit or enter a new name.

4 To accept your changes and close the text box, click outside of the text box. To save
your changes, select File > Save As.

Prune (Delete) Leaf or Branch Mode

Your tree can contain leaves that are far outside the phylogeny, or it can have duplicate
leaves that you want to remove.

5 Phylogenetic Analysis

5-32

1 Select Tools > Prune, or from the toolbar, click the Prune (delete) Leaf/Branch

Mode icon .

The app is set to prune mode.
2 Point to a branch or leaf node.

For a leaf node, the branch line connected to the leaf appears in gray. For a branch
node, the branch lines below the node appear in gray.

Note: If you delete nodes (branches or leaves), you cannot undo the changes. The
Phylogenetic Tree app does not have an Undo command.

3 Click the branch or leaf node.

The tool removes the branch from the figure and rearranges the other nodes to
balance the tree structure. It does not recalculate the phylogeny.

Tip After pruning nodes, you can redraw the tree by selecting Tools > Fit to Window.

Zoom In, Zoom Out, and Pan Commands

The Zoom and Pan commands are the standard controls for resizing and moving the
screen in any MATLAB Figure window.

1
Select Tools > Zoom In, or from the toolbar, click the Zoom In icon .

The app activates zoom in mode and changes the cursor to a magnifying glass.

 Phylogenetic Tree App Reference

5-33

2 Place the cursor over the section of the tree diagram you want to enlarge and then
click.

The tree diagram doubles its size.

3
From the toolbar click the Pan icon .

4 Move the cursor over the tree diagram, left-click, and drag the diagram to the
location you want to view.

Tip After zooming and panning, you can reset the tree to its original view, by selecting
Tools > Reset View.

Select Submenu

Select a single branch or leaf node by clicking it. Select multiple branch or leaf nodes by
Shift-clicking the nodes, or click-dragging to draw a box around nodes.

Use the Select submenu to select specific branch and leaf nodes based on different
criteria.

• Select By Distance — Displays a slider bar at the top of the window, which you
slide to specify a distance threshold. Nodes whose distance from the selected node are

5 Phylogenetic Analysis

5-34

below this threshold appear in red. Nodes whose distance from the selected node are
above this threshold appear in blue.

• Select Common Ancestor — For all selected nodes, highlights the closest common
ancestor branch node in red.

• Select Leaves — If one or more nodes are selected, highlights the nodes that are leaf
nodes in red. If no nodes are selected, highlights all leaf nodes in red

• Propagate Selection — For all selected nodes, highlights the descendant nodes in
red.

• Swap Selection — Clears all selected nodes and selects all deselected nodes.

After selecting nodes using one of the previous commands, hide and show the nodes using
the following commands:

• Collapse Selected
• Expand Selected
• Expand All

Clear all selected nodes by clicking anywhere else in the Phylogenetic Tree app.

Find Leaf or Branch Command

Phylogenetic trees can have thousands of leaves and branches, and finding a specific
node can be difficult. Use the Find Leaf/Branch command to locate a node using its
name or part of its name.

1 Select Tools > Find Leaf/Branch.

The Find Leaf/Branch dialog box opens.

2 In the Regular Expression to match box, enter a name or partial name of a
branch or leaf node.

 Phylogenetic Tree App Reference

5-35

3 Click OK.

The branch or leaf nodes that match the expression appear in red.

After selecting nodes using the Find Leaf/Branch command, you can hide and show the
nodes using the following commands:

• Collapse Selected
• Expand Selected
• Expand All

Collapse Selected, Expand Selected, and Expand All Commands

When you select nodes, either manually or using the previous commands, you can then
collapse them by selecting Tools > Collapse Selected.

The data for branches and leaves that you hide using the Collapse/Expand or Collapse
Selected command are not removed from the tree. You can display selected or all hidden
data using the Expand Selected or Expand All command.

Fit to Window Command

After you hide nodes with the collapse commands, or delete nodes with the Prune
command, there can be extra space in the tree diagram. Use the Fit to Window
command to redraw the tree diagram to fill the entire Figure window.

Select Tools > Fit to Window.

Reset View Command

Use the Reset View command to remove formatting changes such as collapsed branches
and zooms.

Select Tools > Reset View.

Options Submenu

Use the Options command to select the behavior for the zoom and pan modes.

• Unconstrained Zoom — Allow zooming in both horizontal and vertical directions.
• Horizontal Zoom — Restrict zooming to the horizontal direction.

5 Phylogenetic Analysis

5-36

• Vertical Zoom (default) — Restrict zooming to the vertical direction.
• Unconstrained Pan — Allow panning in both horizontal and vertical directions.
• Horizontal Pan — Restrict panning to the horizontal direction.
• Vertical Pan (default) — Restrict panning to the vertical direction.

Window Menu

This section illustrates how to switch to any open window.

The Window menu is standard on MATLAB interfaces and Figure windows. Use this
menu to select any opened window.

Help Menu

This section illustrates how to select quick links to the Bioinformatics Toolbox
documentation for phylogenetic analysis functions, tutorials, and the Phylogenetic
Tree app reference.

Use the Help menu to select quick links to the Bioinformatics Toolbox documentation for
phylogenetic analysis functions, tutorials, and the phytreeviewer reference.

